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Abstract

We are constantly barraged with information, and yet to navigate the
world successfully we must be capable of isolating relevant units. The pro-
cess of learning statistical relationships between items or events is called
statistical learning, and it is a ubiquitous and powerful learning mecha-
nism spanning many modalities and domains. With such a powerful learn-
ing mechanism at their disposal, humans must use strategies to direct their
abilities in effective manner. We sought to understand how people use two
strategies, matching and maximization (loosely analogous to exploration
and exploitation respectively), to learn sequences that mimic the complex-
ity of the real-world visual environment. Subjects observed sequences of
symbols generated by a first-order Markov process and were asked to pre-
dict the upcoming stimulus. Computational modelling was used to extract
the learning profiles of participants and the strategies that they followed in
learning patterns and making predictions. Using these indices, we tested
subjects in seven different conditions, hypothesizing that subjects would
change their strategies based on different situational demands. We first
tested whether subjects would engage different strategies when directed
feedback was provided. We predicted that subjects would use more maxi-
mization strategies when task structure encouraged maximization, and this
was what was observed. We then tested whether subjects would change
strategies when stimuli were presented in an irregular manner. We pre-
dicted poorer performance and poorly-performing strategies, but we in-
stead observed more maximizing behaviour. Finally, we tested whether
subjects would adopt new strategies when the ease of specific strategies
was manipulated. We predicted that more subjects would use a match-
ing strategy in the group with the comparatively easier matching strategy,
but in actuality subjects continued to use the same strategies across both
groups. This experiment explored and supported the hypothesis that sub-
jects change their strategies with respect to task structure even in a complex
paradigm imitating statistical learning in the real world.
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Chapter 1

Introduction

Humans are barraged with complex sensory information in their daily lives.
How can they extract relevant units from the overload of stimulation? One
powerful mechanism is statistical learning, the process of learning the sta-
tistical relationships between items and events to understand the structure
of the world. For example, consider the case of infants trying to learn lan-
guage. People deliver a continuous auditory stream, and babies must de-
termine the structure in this sequence to isolate "words". How do babies do
this? If an adult says, "the baby laughs" and "the baby eats" for example,
the two syllables "ba" and "by" co-occur more frequently than any other
two syllables in these phrases. Babies are sensitive to the transitional prob-
abilities between words and this is one mechanism by which they learn. In
fact, seminal studies by Saffran, Aslin, and Newport (1996) showing that
infants could learn to segment words by extracting the transitional proba-
bilities between nonsense syllables are the foundation of modern statistical
learning.

Statistical learning is a powerful means of extracting information about
our environments. The language-learning study by Saffran, Aslin, and
Newport (1996) is a specific example of statistical learning and illustrates
the probabilistic nature of searching for relationships between neighbour-
ing items (in the case syllables). Since the original language learning stud-
ies, the field has expanded in depth and breadth. It spans to encompass
a study by Brady and Oliva (2008) showing that after adults observed a
stream of 12 scene images organized into triplets by scene category, when
they viewed names of those scene categories later (e.g. "Forest", "Moun-
tain") they identified triplets that followed the order of the original images
as "more familiar" than triplets with random orderings of the words. Statis-
tical learning has been shown to take place in children and adults (Saffran,
E. Johnson, et al., 1999), within a few minutes (Saffran, Aslin, and New-
port, 1996; Aslin, Saffran, and Newport, 1998), automatically (Fiser and
Aslin, 2001; Brady and Oliva, 2008), without conscious awareness (Kim
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et al., 2009), across modalities (Conway and Christiansen, 2005), and can
transfer across space and time (Turk-Browne and Scholl, 2009). It is a ubiq-
uitous means of segmenting and categorizing regularities from continuous
streams of information so that predictions can be accurately made about the
world.

Statistical learning is the foundational mechanism, but how do people
direct this capacity for probabilistic associations in daily life: what are the
strategies that people use in learning complex statistical relationships? The
strategies that people use depend on their desired outcomes: people will
learn information so that they able to predict future events and ensure the
best possible result. Two common strategies that people use are exploration
and exploitation. Suppose one is trying to find a best restaurant to eat din-
ner. One strategy is to return to the family favourite: this restaurant usually
produces good food, so one is likely to enjoy a hearty meal. This is an ex-
ploitation strategy: capitalizing on something with a known outcome. One
could also try a new restaurant, in the hope that it will have even better
food. This is an exploration strategy: sampling to determine outcomes, so
that better choices can be made in the future. The strategies that people
use to navigate a probabilistic world determine their outcomes— in this
case, the quality of their meal, but these same strategies apply to higher-
stakes decisions like buying a house. Understanding why people use one
strategy or another— or influencing which strategies people use in certain
situations— is thus an important goal. Maximizing (analogous to exploita-
tion) and matching (analogous to exploration) strategies have been studied
scientifically, but often not in the context of statistical learning. Since sta-
tistical learning is the mechanism by which most of us learn most things
in life, it is key to understand how people direct their learning in choosing
strategies to predict and make decisions.

The following experiment aims to address the question of how people
use strategies in statistical learning. It would seem useless for humans to
not use different strategies in different situations, so we hypothesized that
by placing people in different learning environments, they would use dif-
ferent strategies to acquire and predict information. In the first set of ex-
perimental groups, we asked whether peoples’ strategies would change if
we changed their desired outcomes: if we gave them feedback indicating
which component of learning was deemed relevant. We expected that sub-
jects would grow to use more maximizing strategies as feedback empha-
sizing maximization was increased. This effect was indeed observed. In
the second set of experimental groups, we asked whether peoples’ strate-
gies would change if we altered the temporal dynamics of how information
was delivered to them: if we upset the regular temporal spacing between
items and instead presented stimuli in an uneven jittered manner. Given
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the fundamental nature of timing relationships in determining if two events
are associated, we expected that subjects’ strategies would change with this
manipulation— that they would perform poorly in situations with less reg-
ularity and adopt strategies with poorer outcomes. In fact, people adopted
strategies with better outcomes. Finally, in the third set of experimental
groups we asked whether peoples’ strategies would change if one strategy
were made more or less difficult compared to the other. We predicted that
subjects would more often choose easier-to-execute strategies independent
of the effectiveness of the strategy. We observed that subjects instead were
not very much affected by such a manipulation.

In this experiment, we investigated the question of how subjects would
use maximizing and matching strategies to direct their statistical learning.
We hypothesized that depending on the situational constraints, subjects
would differ in their relative uses of these strategies. We implemented
feedback manipulations, temporal jitter manipulations, and manipulations
changing the structure of the underlying sequence which facilitated the rel-
ative use of one strategy over the other. Though matching and maximiza-
tion strategies have been previously investigated, we sought to determine
their use in a complex statistical learning paradigm mimicking the com-
plexity of the decisions people make in everyday life.

1.1 Paradigms

There are many paradigms investigating statistical learning, and some are
more useful than others in investigating the question of strategy use and
the impact of task structure. Some of these statistical learning paradigms in-
clude artificial language learning, visual statistical learning, artificial gram-
mar learning, sequence learning, audio-visual learning, and contextual cu-
ing. All of these paradigms propose to investigate the same abilities, but
they differ in their task complexity (and therefore ecological validity), whether
individual differences in subject behaviours / strategies can be measured,
the precision of response measures, and whether previous generalisation
and transfer results have been observed. The latter concept of generalisa-
tion / transfer / abstraction goes by many names, but refers to the idea that
the rules that people extract about the world should apply to more than spe-
cific instances: for example, when babies are learning the word "shirt", they
should learn the more general use of the term rather than thinking it means
"red shirt" given the two red shirts they have seen. People should then be
able to demonstrate their acquisition of such rules by applying them to new
domains and modalities. Abstraction often refers to the ability to generalise
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over surface features like colour or other forms of noise; transfer is the ap-
plication of learned rules. (See Aslin and Newport (2014) for additional
discussion.)

1.1.1 Artificial Language Learning

The original statistical learning studies by Saffran, Aslin, and Newport (1996)
involved infants listening to undifferentiated streams of sounds. These
streams consisted of triplets of syllables that followed each other contin-
uously: e.g. bi-da-ku-pa-do-ti-go-la-bu-bi-da-ku where the beginning of each
triplet is bolded. The only method to determine where a "word" (triplet)
began was to observe the transitional probabilities between sounds: each
syllable within a word would follow the preceding syllable with 1.0 prob-
ability, but the beginning syllables of words would follow other syllables
with probability .33. In the test phase, infants heard two different types of
triplets: either syllable triplets in the same order as they had heard in the
training phase ("words") or triplets in unfamiliar orders ("non-words"). Af-
ter only two minutes of training, at test infants spent more time listening
to non-words than words, a novelty effect showing that they had attended
to the transitional probabilities of the syllables and were able to success-
fully distinguish between words and non-words. This demonstration of
statistical learning was confirmed and expanded upon in follow-up studies
(Saffran, Newport, and Aslin, 1996; Saffran, Newport, Aslin, et al., 1997;
Saffran, E. Johnson, et al., 1999; Saffran, 2001; Saffran, 2002; Maye, Werker,
and Gerken, 2002; Saffran and Thiessen, 2003). The application to ecolog-
ical language acquisition has been recognized, and the idea that children
execute first-order statistical learning (applying the assumption that words,
like syllables, are predictive of other words) is computationally supported
(Goldwater, Griffiths, and M. Johnson, 2009).

The traditional artificial language learning paradigm has produced pow-
erful results, though it is limited by the use of simple patterns like triplets.
Subjects are also limited in the behaviours they can exhibit as looking time
is a constrained response measure. This paradigm can produce strong trans-
fer results, however, elucidating the underlying rules that subjects learn
(e.g. Marcus, K. Fernandes, and S. Johnson (2007)).

1.1.2 Visual Statistical Learning

Fiser and Aslin (2002a) developed a visual version of the Saffran, Aslin,
and Newport (1996) artificial language learning paradigm in which triplets
of shapes appeared one by one from behind an occluder (e.g. A-B-C-G-
H-I-D-E-F-A-B-C. . . , where each letter represents a shape). These triplets
were identifiable only by their transitional probabilities, and the response
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measure was a familiarity test: subjects were required to choose whether
the triplets they had observed were more familiar than "foils"— triplets
composed of syllables related by a joint probability of zero (e.g. G-A-D).
Subjects reliably passed this familiarity test, demonstrating visual statisti-
cal learning; these findings have been confirmed in further studies (Fiser
and Aslin, 2001; Fiser and Aslin, 2002b; Fiser and Aslin, 2005; Kirkham,
Slemmer, and S. Johnson, 2002; Turk-Browne, Jungé, and Scholl, 2005; Turk-
Browne, Isola, et al., 2008; Baldwin et al., 2008). Familiarity tests are of-
ten used in visual statistical learning studies (Fiser and Aslin, 2001; Fiser
and Aslin, 2002a; Turk-Browne, Jungé, and Scholl, 2005), but implicit re-
action time measures are also used, under the assumption that if statisti-
cal learning took place then subjects will be primed to respond faster to
the second and third syllables in a trained triplet (Hunt and Aslin (2001),
Turk-Browne, Jungé, and Scholl (2005), and Kim et al. (2009)). Contextual
cuing paradigms also use response time (Chun and Jiang, 1998; Olson and
Chun, 2001; Brady and Chun, 2007). Response time measures can be more
powerful than familiarity measures because they capture whether a sub-
ject is predicting an upcoming stimulus rather than just classifying it. fMRI
response measures have also been applied (Schapiro, Kustner, and Turk-
Browne, 2012; Karuza et al., 2013; Schapiro, Gregory, et al., 2014; Turk-
Browne, Scholl, et al., 2010).

Typical visual statistical learning studies are also limited by simplistic
triplet patterns as well as the individual differences subjects can exhibit
within the constraints of familiarity tests and implicit reaction times as re-
sponse measures. However, these studies have also produced powerful
generalisation results across colour, shape, time and space among others
(Turk-Browne, Isola, et al., 2008; Turk-Browne and Scholl, 2009).

1.1.3 Artificial Grammar Learning

In an artificial grammar learning paradigm, subjects typically view strings
of items, often letters, that have been generated through a finite-state gram-
mar. All of the letters from a string are presented simultaneously, and
strings are generally around 3-8 letters long; an example of a grammar
and associated strings is shown in Figure 1.1. At test, subjects are exposed
to new strings either generated by the grammar ("grammatical") or strings
that violate at least one of the rules of the grammar ("ungrammatical"). Sub-
jects who correctly classify grammatical and ungrammatical strings have
exhibited statistical learning (Reber, 1967).

The stimuli from artificial grammar learning paradigms are complex
and more similar to the type of stimuli generated in our daily environments.
These studies do have the limitation that individual differences are difficult
to capture due to the one-measure "grammaticality" response. Moreover,
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FIGURE 1.1: A finite grammar. Letters are appended to a
string.

because the task is complex, it is difficult to determine which aspect of the
training stimuli has been learned. To investigate this, the field has distin-
guished between "non-transfer" learning, which is described in the preced-
ing paragraph, and "transfer" learning, which is the ability to classify strings
as grammatical when the strings have been generated using the same gram-
mar but are executed in a new vocabulary (new letters) (Lotz and Kinder,
2006). Artificial grammar learning has thus made progress in trying to iso-
late what is learned and what can be generalised using a complex stimulus
set.

1.1.4 Sequence Learning

Sequence learning predates the modern conception of statistical learning
and is distinct in that it uses only deterministic, non-stochastic sequences
(see Schwarb and Schumacher (2012) for a review). Sequence learning was
developed to study implicit spatial sequence learning and uses the serial re-
action time task, developed by Nissen and Bullemer (1987). In Nissen and
Bullemer (1987), an asterisk appeared in a position on a screen and subjects
pressed a button in the corresponding position. The asterisks appeared in
a 10-position sequence (e.g. 4-2-3-1-3-2-4-3-2-1, where each number repre-
sents one of the four positions) for the test group, and at random locations
for the control group. Subjects in the test group responded more quickly
and accurately than those in the control group, demonstrating sequence
learning. Sequences such as that used in Nissen and Bullemer (1987) are
called hybrid sequences because different positions can follow from any
specific position: e.g. "3", "4", and "1" all appear after "2" at specific points.
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This sort of sequence is distinguishable from "unique" sequences in which
there is a single path (e.g. 4-2-3-1) (Cohen, Ivry, and Keele, 1990).

Sequence learning studies use deterministic sequences, which are not
typical of statistical contingencies in the environment. However, one of
the great advantages of sequence learning is that individual learning can
be accessed online in a continuous way, rather than probed at the end of
training during a test phase. Questions can be asked about which specific
items are being learned and when they are being learned using the precise,
trial-by-trial reaction time measure, and this response moreover requires
subjects to predict the upcoming stimulus.

1.1.5 This Study’s Paradigm

To answer the question of what strategies subjects use in statistical learn-
ing, we sought to develop a paradigm that combined the most relevant
elements of the various statistical learning tasks available. Previous studies
have combined the serial reaction time task with artificial grammar learn-
ing (Cleeremans and McClelland, 1991), language-learning tasks (Hunt and
Aslin, 2001; Misyak, Christiansen, and Tomblin, 2010), and tasks with triplet
structure (Hunt and Aslin, 2001; Howard et al., 2008). Gómez (1997) used
an artificial grammar learning paradigm but instead of having letters in
strings displayed simultaneously on a screen, letters were sequentially pre-
sented one at a time. Untrained letters were also presented sequentially
in the transfer condition of this study. From another direction, Baker et
al. (2014) developed a non-serial-reaction-time sequence learning task that
incorporated probabilistic elements from visual learning tasks— the se-
quences were probabilistic but alternated so that the subject faced proba-
bilistic choices. Many studies involved multiple sessions of training taking
place over several days (Cleeremans and McClelland, 1991; Hunt and Aslin,
2001; Howard et al., 2008; Baker et al., 2014) with sleep consolidation (Dur-
rant, Taylor, et al., 2011; Durrant, Cairney, and Lewis, 2013), rather than
the rapid, minute-long learning that characterizes most statistical learning
studies. In this study, subjects trained for five sessions over five days so that
their progress could be tracked over time and individual differences could
emerge.

The paradigm developed for this study (very similar to Wang et al. (in
review)) captured the task complexity of artificial grammar learning, the
predictive and trial-by-trial response precision of sequence learning tasks,
and the control of transfer conditions exemplified in visual statistical learn-
ing. Subjects predicted upcoming symbols while viewing sequences of
symbols generated by probabilistic first-order Markov processes (meaning
that each symbol depended probabilistically on the immediately preceding
symbol). Computational models were developed (originally in Wang et al.
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(in review)) to extract several different learning measures and strategy in-
dices, so that the type of learning and decision strategies employed could
be tracked for individual subjects on every trial.

Three transfer tests were also developed: an untrained probability trans-
fer test, an untrained symbol transfer test, and an untrained speed transfer
test to probe what information subjects extracted and could apply to new
sequences. The probability transfer test reversed the relationships govern-
ing stimuli order, and asked whether training on the sequence-learning
task would facilitate acquisition of new sequences where previously low-
probability information was emphasized. The symbols transfer test asked
whether subjects had learned the underlying grammar at a level that would
enable them to map their learning onto a new set of symbols. The speed test
asked if training on the sequence-learning task would enable subjects to
learn novel sequences faster than they had been capable of previously. This
paradigm lent itself well to the transfer studies and also to interventions,
such as feedback manipulations.

The experiment was designed to address the question of what strategies
people employ during statistical learning. The study is unique among sta-
tistical learning paradigms in that it is specifically adapted to this purpose.
The probabilistic and long-term structure of the study mimicked real-life
statistical learning and encouraged participants to adopt differentiable and
complex strategies. The precise response measures and online-trial-by-trial
accumulation of responses allowed the investigation of strategy develop-
ment over time. The computational models were designed to extract strat-
egy indices for individual participants which allowed comparison between
experimental groups. This paradigm incorporated elements of various ex-
isting statistical learning studies to address the question of what strategies
people use to make decisions in probabilistic environments.

1.2 Strategies

We sought to investigate the strategies that subjects use in statistical learn-
ing. What is known about these strategies, specifically maximization and
matching? Recall that in the context of choosing a restaurant, exploitation
(analogous to maximization) would be choosing a restaurant you already
know is good (taking advantage of an option with known rewards), while
exploration (analogous to matching) would be taking the risk of trying
somewhere new (venturing into the arena of unknown rewards in the hope
of optimizing later). Maximizing behaviour is often the optimal behaviour
in probabilistic lab settings, where stochasticity is carefully controlled: sub-
jects should find the choice with the highest probability and always pursue
that choice. Matching behaviour, on the other hand, is responding in such
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a way so that subjects’ choice probabilities match the outcome probabili-
ties (Koehler and James, 2014). For example, in the paradigm used in this
study, "C" follows "B" 80% of the time, but 20% of the time the loop will
move backwards and "A" will follow B instead. Subjects who exhibit per-
fect maximization behaviour will choose "C" 100% of the time. Subjects
who exhibit perfect matching behaviour will choose "C" 80% of the time,
and "A" 20% of the time, matching the outcome probabilities that they have
observed.

Maximizing and matching are strategies for both responding and learn-
ing information. If a subject is a matcher they are guaranteed to have
learned all of the statistical contingencies between events— they must have
learned that "A" follows "B" 20% of the time and that "C" follows "B" 80%
of the time. Maximizers, however, can get away with only learning that "C"
often follows "B"; they do not necessarily need to know anything about "A".
Investigating these strategies thus has important implications surrounding
not only how people make decisions but also how people learn. It makes
sense to know how to manipulate these strategies so that the appropriate
strategies are engaged in the many cases of uncertainty that we face in our
daily lives.

If maximization is the easier and the rational response, what is the role
of a matching strategy? Ever since this question started being investigated
in the 1950s (see Vulkan (2000) for a review), researchers have struggled
with why a matching strategy exists at all. In a binary prediction task (ex-
plained below), which is the standard task for investigating these strategies,
matching violates rational choice. Consider the task of watching an experi-
menter pull marbles out of a bag, one at a time, and puts them back as soon
as she has shown them to you. You have learned that 70% of these marbles
are green, and 30% are red. You are to guess the colour of the next marble
and are paid a bonus every time you do so correctly. The rational choice
would be to choose green 100% of the time, a maximizing strategy, which
would ensure you were correct 1.0*.70 + 0.0*.30 = 70% of the time. If you
used a matching strategy, you would only be correct .70*.70 + .30*.30 = 58%
of the time. The fact that matching behaviour emerges at all— sometimes
that it even seems to be the default strategy on these tasks— has puzzled
researchers for decades.

Currently the debate has centred around trying to understand whether
matching is a fault in our intuitive reasoning systems— matching as a "dumb"
strategy and maximizing as a "smart" one— or if matching is an adaptive,
sophisticated strategy in specific situations of uncertainty— matching as a
"smart" strategy and maximizing as the dumb one (see Koehler and James
(2014) for a comprehensive review). From the "matching is dumb" perspec-
tive, the strongest argument is that people are rationally guaranteed to earn
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a higher payout using a maximizing strategy. It is possible that the maxi-
mizing strategy simply does not occur to subjects: when Koehler and James
(2010) separated their subjects into two groups, one that was explicitly told
about the maximizing and matching strategies and asked which would
earn them more money, and one group that was not, more subjects in the
group given the "hint" maximized. Moreover, West and Stanovich (2003)
have shown that subjects who maximize tend to have higher self-reported
SAT reasoning scores, a standardised test used to assess cognitive abilities.
However, on the "maximizing is dumb" side of the debate, children tend
to maximize (Derks and Paclisanu, 1967), subjects under cognitive load
tend to maximize (Wolford et al., 2004), and subjects deprived of glucose
tend to maximize (McMahon and Scheel, 2010). More relevant to the com-
plex paradigm used in this study, matching behaviour demonstrates that
difficult-to-learn low-probability information was acquired, while this is
not necessarily the case when subjects demonstrate maximizing behaviour.
Of course, subjects could be acquiring all of the low-probability informa-
tion in their heads and still behaviourally maximizing, a point discussed in
Koehler and James (2014) under the name of "pattern matching" and why
the exploitation vs. exploration analogy discussed earlier is useful but in-
correct to some degree.

Maximization and matching are commonly investigated in simpler learn-
ing paradigms— the marble example is a classic case in that the predic-
tion for the next marble is probabilistic (you have a 70% of guessing the
next marble) but does not depend on events in the past. In other words,
your guess for the next marble does not at all depend on which marble
was pulled out previously. In the real world, this kind of sampling inde-
pendence is not often encountered: what happened yesterday determines
where you are today; wherever you are now is not independent of where
you were 30 seconds ago. We sought to investigate how subjects used max-
imization and matching strategies in a context in which previous events
mattered. In this experiment, the immediately preceding item probabilisti-
cally influenced which item would appear next, a pattern more realistic to
the events encountered in daily life.

1.3 This Study

Statistical learning is a powerful mechanism that describes a variety of cog-
nitive functions, spans many paradigms, and uses various response mea-
sures. All of statistical learning falls under one title in the expectation that
it describes one set of learning mechanisms or processes (Kirkham, Slem-
mer, and S. Johnson (2002) and Perruchet and Pacton (2006), cf: Bays, Turk-
Browne, and Seitz (2016)). As Frost et al. (2015) describe: "Our approach
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construes statistical learning as involving a set of domain- general neuro-
biological mechanisms for learning, representation, and processing that de-
tect and encode a range of distributional properties within different modali-
ties or types of input." As a primary means of understanding and interpret-
ing information in our daily lives, it is important to investigate how peo-
ple employ these learning abilities. Specifically, we asked what strategies
subjects use in harnessing their ability to observe and predict probabilistic
behaviour.

We hypothesized that under different situational conditions, people would
change their use of maximization and matching strategies. When subjects
were faced with feedback that changed their desired outcomes, it was pre-
dicted that subjects would maximize more when maximizing feedback was
employed. When subjects were faced with the task of predicting items that
were presented in unusual timing grouping (temporal jitter added to the
stimulus presentation), it was predicted that they would perform poorly
in the learning task and adopt less optimal— fewer maximizing— strate-
gies. Finally, when subjects encountered sequence structures that made
matching strategies easier or harder to use, it was predicted that they would
match more when the matching strategy was made easier. This set of ex-
periments addressed the question of how people use strategies in a complex
statistical learning paradigm that drew upon principles of everyday learn-
ing, and additionally employed transfer tests to understand the content of
what subjects learned and how their learning generalised.

This set of experimental groups is described in several chapters, all in-
vestigating how strategies changed in different situations. Chapter 3 de-
scribes the findings from the Feedback groups, Chapter 4 describes the find-
ings from the Temporal Jitter groups, Chapter 5 describes the findings from
the Structural Contingencies groups. In Appendix A we ask about individ-
ual differences with group-general findings and cognitive tests. Chapter 6
provides a general discussion of the results of all experiments.
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Chapter 2

Methods

All means are reported with standard error.

2.1 Observers

115 naïve volunteers participated in 3 sets of experimental comparisons:
Feedback, Temporal Jitter, and Structural Contingencies. There were a to-
tal of 7 experimental groups within these 3 sets. 18 volunteers participated
in Group 1 ("Main", mean age = 23±.6 years); 18 volunteers participated
in Group 2 ("Feedback", mean age = 22±.6 years); 14 volunteers partici-
pated in Group 3 ("Maximization Feedback", mean age = 23±.7 years); 14
volunteers participated in Group 4 ("No Feedback", mean age = 22±1.0

years); 18 volunteers participated in Group 5 ("Jitter", mean age = 23±.6
years); 19 volunteers participated in Group 6 ("Augmented Jitter", mean
age = 23±.6 years), 1 subject excluded due to noncompliance; 14 volunteers
participants participated in Group 7 ("Different Contingencies", mean age
= 23±.8 years). All had normal or corrected-to-normal vision, gave writ-
ten informed consent and were compensated monetarily (7 pounds/hour)
for their time. This study was approved by the Psychology Research Ethics
Committee of the University of Cambridge.

2.2 Experimental Setup

Testing was conducted in three dimly lit testing rooms on two monitor
types: (Setup 1) a gamma-corrected 21-inch ViewSonic P225f colour mon-
itor (1024 pixel x 768 pixel resolution; 0.38mm x 0.38mm per pixel) and
(Setup 2) a gamma-corrected 23.6-inch VIEWPixx / 3D colour monitor (1920
pixel x 1080 pixel resolution). Subjects used a chin rest positioned 60cm
(Setup 1) and 43cm (Setup 2) from the monitor to equate viewer stimulus
size.
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TABLE 2.1: RSVP task parameters.

RSVP Baseline Rapid Group-Specific

# Items per Trial 10 9-13 9-13
Presentation Time (ms) 100 100 100
Inter-Stimulus Interval (ms) 100 100 400
Spatial Jitter (◦ of visual angle) 0 .6 .6
Temporal Jitter (up to %) 0 0 40 ("Jit."), 60 ("Aug. Jit.")
# Times Target could appear 0-1 0-2 0-2

2.3 Cognitive Assessment Tasks

Independent from the sequence learning task, subjects performed several
tasks to assess suitability for inclusion in the sequence learning task and
general cognitive performance.

2.3.1 Rapid Serial Visual Presentation (RSVP) task

Subjects were tested on three rapid serial visual presentation (RSVP) tasks
("Baseline", "Rapid", "Group-Specific") to evaluate their abilities to attend
to temporally-demanding stimuli (Table 2.1). Subjects were shown a first
image, and then a stream of other images, and responded how many times
the first image appeared in the stream.

Specifically, RSVP structure was based on (Potter et al., 2002) and code
was adapted from http://web.mit.edu/kehinger/www/PTBexamples.

html (link since removed). Subjects were first shown a fixation cross (500ms)
followed by an image designated as the target image (500ms). After a 1s
delay, subjects were shown a stream of either 10 different images of fa-
miliar objects (Baseline RSVP) or 9-13 different images of unfamiliar sym-
bols (Rapid and Group-Specific RSVP). Familiar object images were down-
loaded from http://web.mit.edu/kehinger/www/PTBexamples.html

(link since removed); symbols were taken from the Ndjuká (http://www.
omniglot.com/writing/ndjuka.htm), Old South Arabian syllabaries
(http://www.unicode.org/charts/PDF/U10A60.pdf), and Qataban
(http://www.alanwood.net/unicode/fonts-middle-eastern.html#
oldsoutharabian, follow links to Qataban download) and were not used
in the sequential learning task. Images were drawn randomly from a pool
of 20 alternatives and subtended 8.2◦ of visual angle.

Items in the stream were presented for 100ms with a 1) 100ms inter-
stimulus interval (Baseline and Rapid RSVP) or 2) 400ms inter-stimulus in-
terval (Group-Specific RSVP). Random spatial jitter up to ±0.6◦ of visual
angle was applied to the Rapid and Group-Specific RSVP tasks; jitter was

http://web.mit.edu/kehinger/www/PTBexamples.html
http://web.mit.edu/kehinger/www/PTBexamples.html
http://web.mit.edu/kehinger/www/PTBexamples.html
http://www.omniglot.com/writing/ndjuka.htm
http://www.omniglot.com/writing/ndjuka.htm
http://www.unicode.org/charts/PDF/U10A60.pdf
http://www.alanwood.net/unicode/fonts-middle-eastern.html#oldsoutharabian
http://www.alanwood.net/unicode/fonts-middle-eastern.html#oldsoutharabian
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centred on the fixation point and occurred in vertical and horizontal axes in-
dependently. In the Group-Specific RSVP, subjects that went on to complete
the Jitter and Augmented Jitter groups saw inter-stimulus interval blocks
with mean 400ms but uniformly and randomly distributed across the val-
ues
200/300/400/500/600ms (Jitter) or 100/120/. . . /680/700ms (Augmented
Jitter). The target item could appear once in the stream, twice in the stream,
or not at all. In the Baseline RSVP, the target object could appear 0-1 times;
in the Rapid and Group-Specific RSVPs the target symbol could appear 0-
2 times. All other items were not repeated. After the stream of either 10
(Baseline RSVP) or 9-13 (Rapid and Group-Specific RSVP) items, subjects
were presented with a 2s window in which they were required to make a
2- or 3-alternative forced choice via keyboard button press indicating how
many times the target item had appeared in the stream. This constituted a
trial. The next trial commenced after 200ms. Each task was performed once
and consisted of 42 trials; participant accuracy was recorded.

Subjects unable to score higher than 80% on the Baseline RSVP task were
excluded from participating.

2.3.2 Visual Short-Term Memory (VSTM) task

Participant working memory was assessed with a sequential visual short-
term memory (VSTM) task adapted from Luck and Vogel (1997). Coloured
dots (diameter 1.7◦ of visual angle) were presented against a grey back-
ground for 500ms, followed by an inter-stimulus interval of 1000ms. Sub-
jects were then shown a new screen with the same configuration of dots;
dots could be the same colours as previously or changed. A white box ap-
peared around one of the dots (determined randomly) and subjects were
required to indicate whether the dot in the box had changed colour via but-
ton press. The number of dots displayed was determined via a two-down
one-up staircase design to achieve 70% performance. Each block consisted
of 10 staircase reversals and the task was performed three times in succes-
sion. Working memory threshold for each block was defined as the mean of
the last two-third reversals in each staircase. Participant working memory
score was recorded as the mean threshold across the three attempts (higher
scores indicate better performance).

Subjects unable to average higher than 3.0 on the VSTM task were ex-
cluded from participating.

2.3.3 Useful Field of View (UFOV) task

The Useful Field of View (UFOV, Visual Awareness Inc.) task was used to
assess selective attention capacity (e.g. described in Edwards et al. (2006)).
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Each trial began with a white fixation box presented for 1 second against
a black background. The test stimuli were then presented for a variable
time as determined by participant ability. A visual mask was shown for 1s
to control for afterimage effects, then the response screen was shown. Re-
sponses were made using mouse clicks. There were two components to the
response: the first tested processing speed and required participants to cor-
rectly identify a silhouette (1.9 x 1.4◦ angle) of a car or truck which had been
presented centrally inside a white bounding square (2.9◦ of visual angle).
The second component required the participant to identify the location of
a simultaneously presented silhouette of a car (1.9 x 1.4◦ of visual angle)
at one of 8 radial locations (fixed 10.4◦ of visual angle from central stimu-
lus). Selective attention was assessed by requiring the participant to ignore
47 triangles of the same size and luminance as the radial target. A double
staircase was used to determine the display duration at which each partici-
pant correctly performed the selective attention task 75% of the time (lower
scores indicate better performance).

Subjects unable to average lower than 300ms on the UFOV tasks were
excluded from participating.

Additional cognitive tasks described in Appendix A.

2.4 Sequence Learning Task

2.4.1 Stimuli

Three sets of symbols (sets A, B, and C) were generated from the Ndjuká,
Old South Arabian and Qataban syllabaries (Figure 2.1); symbols were un-
familiar to participants and highly discriminable. Symbol sets were ran-
domly allocated to participants in the "training" condition (this set was
also used in the test and probability transfer test), symbol transfer test, and
speed transfer test.

Symbol mappings (which symbol images were assigned to "A","B","C",
and "D" in sequences) were randomised across participants. Symbols sub-
tended 8.2◦ of visual angle and were presented centrally in black on a grey
background. Random spatial jitter of up to ±0.6◦ visual angle was applied
to the presented symbols and occurred independently in both the verti-
cal and horizontal dimensions. Sequences were presented using the Psy-
chophysics toolbox 3 for Matlab (http://psychtoolbox.org) (Brainard, 1997;
Pelli, 1997).

2.4.2 Sequence Design

Markov models can be used to generate sequences where individual items
depend only on the previous item (first-order Markov models, memory
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(A) Symbol Set A

(B) Symbol Set B

(C) Symbol Set C

FIGURE 2.1: Symbol sets. Symbol sets A, B and C were
taken from the Ndjuká, Old South Arabian and Qataban

syllabaries respectively.

length of 1) or do not depend on any previous item (zero-order Markov
models, memory length of 0).

In this study a first-order Markov model was used to produce proba-
bilistic sequences of symbols, so any symbol that was presented was de-
pendent on the previously-presented symbol. This previously-presented
symbol was called the "context". Within each context, two possible symbols
could follow in the sequence, one with high probability (80%) and one with
low probability (20%) (Figure 5.1). Each symbol had the same average like-
lihood of appearing throughout the sequence (the marginal probabilities of
all four symbols was fixed at 25%).

Random trials were generated using a zero-order Markov model. In
random trials, each symbol had the same average likelihood of appearing
throughout the sequence (the marginal probabilities for all four symbols
was fixed at 25%), and each symbol had the same likelihood of appearing
when context was taken into account (the conditional probabilities for all
four symbols was fixed at 25%).

One long sequence was generated each for 1) training, 2) test, 3) ran-
dom, 4) the probability transfer test, 5) the symbol transfer test, and 6) the
speed transfer test. All sequences were periodically interrupted by a re-
sponse grid, when subjects had to predict the next symbol to appear (the
correct answer was the symbol that had been replaced by the response grid,
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FIGURE 2.2: Main Markov model design. Red arrows in-
dicate the most likely symbol to appear given the context
(80%); blue arrows indicate the less likely symbol (20%).
P(c) refers to marginal probabilities. "A", "B", "C", and "D"
are replaced by symbols (randomized by participant). This
Markov model was used for all groups except Different

Contingencies.

which subjects never observed). These sequences were also segmented into
"blocks" after which feedback would be given before the sequence contin-
ued.

2.4.3 Experimental Groups

Subjects were assigned to three sets of experimental groups (7 groups in
total). First, a "Feedback Groups" set contained the control experiment,
"Main" and three feedback conditions ("Feedback", "Maximization Feed-
back", and "No Feedback"). Second, a "Jitter Groups" set contained the con-
trol experiment, "Main", and two jitter conditions ("Jitter" and "Augmented
Jitter"). Third, a "Structural Contingencies Groups" set contained the con-
trol experiment, "Main" and one condition with sequences generated from
an alternative Markov sequence ("Different Contingencies"). All sets except
for the "Different Contingencies" consisted of sequences generated from the
first-order Markov model described in Figure 5.1(a).

Most experiments contained "block feedback": feedback shown to sub-
jects at the end of each block as "Matching Performance Index", a mea-
sure capturing how closely the probability distribution of the participant
responses matched the probability distribution of the presented symbols.
Block feedback was independent of whether subjects chose the correct next
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symbol in the sequence during the prediction task. Rather, a matching per-
formance index of 100% could be reached if subjects matched the proba-
bilities of each symbol given the context. (For example, symbol "A" might
appear after "B" roughly 20% of the time, and symbol "C" might appear af-
ter "B" 80% of the time. If subjects chose "A" 20% and "C" 80% of the time
after seeing "B", and did this probability matching correctly for all four con-
texts, they would receive a perfect score regardless of the specific items in
the sequence hidden by the response grid.)

In each group, subjects underwent test trials, training trials, and trans-
fer test trials. Each training block consisted of 60 trials on a single symbol
set, with manipulations assigned based on the group (see Table 5.1). During
test segments, subjects completed a test block (40 trials), a random block (40
trials), and another test block (40 trials) using the trained symbol set. As-
sociated experimental manipulations were applied; however, no feedback
was given in any test segments.

Transfer test blocks in the final day were 60 trials and consisted of the
following in order: "untrained probabilities", "untrained symbols", and "un-
trained speed". No feedback (block or trial-by-trial) was given during the
transfer trials. In the "probability transfer" test, trained symbols were used
but the underlying context probabilities were reversed, such that the high-
probability symbol in a given context became the low-probability symbol
and vice versa. In the "symbol transfer" test, the symbol set was switched
(symbol sets were randomly assigned to subjects, so a novel symbol set
was selected) but the underlying model for context probabilities was main-
tained. In the "speed transfer" test, the symbol set was switched to a novel
set again. Additionally, symbols were presented as usual for 100ms, but
the inter-stimulus interval was shortened from 400ms (in the training con-
dition) to 100ms. No temporal jitter was applied during the speed transfer
trials.

2.4.4 Procedure

Subjects who passed the screening tasks were called back for the sequence
learning task, which took place over five consecutive days. On Day 1, sub-
jects were initially familiarized with the sequence learning task through a
brief practice block containing 20 trials of random sequence. Subjects then
completed a pre-training test sequence (40 trials of training sequence / 40
trials of random sequence / 40 trials of training sequence), two pre-training
speed transfer test blocks (60 trials each), followed by two training blocks
(60 trials each). During Days 2–4 subjects completed 7 training blocks per
day. On Day 5 subjects completed a post-training test sequence (40 trials
of training sequence / 40 trials of random sequence / 40 trials of train-
ing sequence), two probability transfer test blocks, two symbol transfer test
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FIGURE 2.3: An example trial. Symbols appeared one by
one separated by white dots. At the end of the trial a red
dot appeared, after which the grid of the symbols was dis-
played. Subjects made their decision by keyboard press,
and a white circle appeared around their choice. This circle
was coloured red or green in the Feedback and Maximiza-

tion Feedback groups.

blocks, and two speed transfer test blocks. Subjects completed these tests in
the fixed order specified. Subjects participated between 45–75 minutes per
day.

Each trial consisted of the following. 9-13 symbols drawn from the same
symbol set appeared one by one in the centre of the screen in a continuous
stream. Each symbol was presented for 100ms and followed by a white
fixation dot for an ISI of 400ms (100ms during the speed transfer test). A
red dot replaced the white dot at the end of the trial, and was followed by
a 2x2 response grid displaying all four symbols in the symbol set. Sym-
bols appeared in randomized locations in the grid. Subjects had two sec-
onds to select which symbol they believed would appeared next with a key
press, at which point their selection would be circled (in white in most of the
groups). This circle was green (correct) or red (incorrect) in the Feedback
and Maximization Feedback groups, based on whichever symbol was hid-
den beneath the response grid (Feedback) or the most likely choice given
the context (Maximization Feedback). After a response had been selected,
a fixation dot appeared for 150ms (ITI) before the next trial began. 40 or
60 trials comprised a block. At the end of each block a break of at least 1
minute was enforced (Figure 2.3).

2.5 Data Analysis

2.5.1 Matching Performance Index

Matching performance index is a measure capturing how closely the proba-
bility distribution of the participant responses matched the probability dis-
tribution of the presented symbols. Matching performance index was cal-
culated for each block. To calculate this index per block, the probability
distributions of both 1) the participant responses and 2) the presented sym-
bols were first calculated for each context. Specifically, for each context (e.g.
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the previously-presented symbol was "A"), the number of times each sym-
bol was 1) chosen / 2) presented was summed across all of the trials in the
block and divided by the number of trials in the block. Once these probabil-
ity distributions for both 1) the participant responses and 2) the presented
symbols were calculated, they were compared by quantifying the amount
of overlap between the two distributions: for each symbol the minimum of
two probability distributions was taken, and then the values calculated for
all four symbols were summed. This gave the matching performance index
per context. Finally, the final matching performance index was calculated
by averaging the performance indices for each context.

2.5.2 Weak Learners

Subjects with mean normalized post-training test matching performance
index scores (mean for both test blocks of post-training test performance −
simulated performance assuming random guessing) <.05 were classified as
weak learners and were excluded from further analysis.

2.5.3 Modelling Approach

Two sources of knowledge were required to correctly perform the sequence
learning task. First, at the most basic level subjects had to be aware that
they were viewing a sequence generated by a first-order Markov process
rather than a zero-order Markov process: subjects must have learned that
any symbol they saw depended on the previous symbol. Second, after this
was understood subjects must have learned the specific statistical contin-
gencies between individual items: e.g., given the last symbol shown was
"A", the next symbol was most likely to be "B". Subjects’ knowledge was
extracted based on their response patterns.

Specifically, these two sources of knowledge were measured using a 1)
context-length model (probing whether subjects understood that the sym-
bols were generated using a first-order Markov model rather than a zero-
order Markov model), and a 2) predictive-contingency model (probing what
knowledge subjects had of the statistical contingencies) (see Appendix B,
textciteWang2016). The predictive-contingency model was then fed into a
3) strategy model to determine whether subjects were using a maximiza-
tion strategy rather than a matching strategy in their responses. These
were Bayesian models that dynamically updated the weights of evidence
that 1) subjects were responding using a first-order Markov assumption
rather than a zero-order Markov assumption, or 3) subjects were using a
maximization strategy rather than a matching strategy in their responses.
The resulting models showed the time courses of how individual subjects
1) learned that sequences were first-order rather than zero-order, and 3)
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adopted different maximization / matching strategies. The context-length
model produces two summary statistics: the learning rate and transition
time. The strategy model produces one summary statistic: ICD (and ICD
end).

Context-Length Model

The context-length model was used to probe whether participants were us-
ing a first-order or a zero-order model to generate their responses during
training. This response-tracking model was based on a weighted combi-
nation of Markov processes (i.e. first- and zero-order). Mixture coefficient
weights were assigned to first-order and zero-order Markov processes; ini-
tially, the coefficient of level-1 was set to .2 and the coefficient of level-0
was set to .8, to reflect that subjects were likely to initially assume a sim-
pler model. Participants then began training, and the mixture coefficients
and the mixture components themselves were updated after each partici-
pant response. The model calculates whether participants’ responses were
more likely to have been driven by a particular mixture component (e.g. a
first-order Markov model) and updates the weights for the components ac-
cordingly in a Bayesian manner. (Further details of the model are described
in Appendix B, Wang et al. (in review).)

Mixture coefficient curves show the context length that individual par-
ticipants were using to respond during training. Values of 1 indicate that
the subject was more likely to be using a first-order Markov model to gen-
erate their responses. Values of 0 indicate that the subject was more likely
to be using a zero-order Markov model to generate their responses. Inter-
mediate values indicate that subject were using context lengths that were a
mixture between Markov level-1 and Markov level-0. These learning curves
follow smooth sigmoid shapes. The slope of a subject’s learning curve de-
scribes how quickly a subject made the transition from responding based
on a first-order Markov model compared to a zero-order Markov model,
and is called the learning rate. The time point (in terms of trials) at which
the mixture coefficient weights for level-1 and level-0 both equal .5 captures
how long it took for subjects to make this transition, and is called the tran-
sition time.

Strategy Model

Because sequences were probabilistically generated, subjects needed to learn
the statistical contingencies between different symbols in order to make cor-
rect predictions in the task. Two common strategies were formulated for
how subjects would make their responses. The first strategy was proba-
bility maximization: choosing the most likely symbol that would appear in
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a given context. For example, if "A" was the previously-presented symbol
(context), and "B" was produced 80% of the time and "D" was produced
20% of the time given this context, then a maximizing response would be to
choose "B" 100% of the time. The other strategy was probability matching:
responding to produce the probability distribution for a given context. For
example, if "A" was the previously-presented symbol, then subjects would
choose "B" 80% of the time and "D" 20% of the time to match the probabil-
ities which they had observed these symbols appeared given the context.
The tendency for subjects to choose a maximizing or matching strategy was
quantified with a strategy index, described below.

To estimate the strategies that participants were using in their predic-
tions, individual participants’ predictive contingency models (see Appendix
B, Wang et al. (in review) for details) were compared to two baseline mod-
els: (i) probability matching, a model whose probability distributions de-
rive from the Markov models used to generate the presented sequences
(Model-matching) and (ii) a probability maximization model, a model where
only the most likely symbol was permitted given each context (Model-maximization).
Kullback-Leiber (KL) divergence was used to compare the participant re-
sponse distribution to the two models.

The difference between the KL divergence from the participant’s pre-
dictive contingency model to Model-matching and the KL divergence from
the predictive contingency model to Model-maximization was quantified as
strategy choice: ∆KL(Model-maximization, Model-matching). Negative strat-
egy choice values indicate a strategy more similar to maximization, while
more positive strategy choice values indicate a strategy more similar to
matching. Strategy choice was computed trial-by-trial and resulted in a
strategy curve for each participant. Two other artificial data sets were gener-
ated simulating responses based on exact matching or maximization.

A strategy index (integral curve difference: ICD) was calculated for each
participant based on their strategy curve. Specifically, the integral of each
participant’s strategy curve subtracted from the exact matching curve as
defined by Model-matching was taken. This value was calculated across all
of training (ICD) and for the last two blocks of training (ICD end). This
integral curve difference between individual strategy and exact matching
is close to zero when subjects use strategies similar to matching, and more
positive when subjects use strategies more similar to maximization.
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Chapter 3

Feedback

3.1 Introduction

In this section, we investigated whether people would change their learning
strategies in situations with different desired outcomes. We hypothesized
that subjects would change their strategies if faced with different task de-
mands. Feedback, an important element in learning new tasks in daily life
(Dale and Christiansen, 2004), details what information is important and
should be attended to. The effect of feedback has been investigated broadly
(see Kluger and DeNisi (1996) for a review) and specifically in regards to
maximization and matching.

Feedback generally seems to encourage maximization: in an artificial
grammar learning task (Dale and Christiansen, 2004), even when feedback
is completely uninformative (Newell and Rakow, 2007), in addition to the
effect of a hint (Newell, Koehler, et al., 2013), and alongside the fact that
training can encourage maximization (Shanks, Tunney, and McCarthy, 2002).
Maximization is the most rational outcome in uncertain probabilistic tasks,
and it is intriguing that feedback seems to encourage people to adopt max-
imization behaviour under so many circumstances in which it might not
be expected to have an effect. It seems that explicitly informing subjects
that they are being monitored encourages subjects to maximize rewards
in a way they do not when performing "unobserved"— perhaps the re-
minder of doing an experimental task forces subjects to evaluate what task
demands they think the experimenter wishes for them to meet. Initially
subjects might not be focused on getting the highest score, but rather ex-
ploring the space of options, until they are reminded by feedback that the
experimenters may want them to maximize their scores. In this experi-
ment, we asked whether the same pattern of maximization would occur
when feedback was given in a more complex paradigm with ambiguous
task demands, and what the effect would be of feedback that was informa-
tive and directed. Would feedback still result in maximization in a complex
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paradigm? If so, if directed feedback was given to encourage matching be-
haviour, would the default to maximizing behaviour occur regardless?

The goal of this study was to ask whether feedback would induce peo-
ple to change the strategies they used to direct their statistical learning.
Four feedback experimental groups were compared to do so. The first
group, "Main", included feedback at the end of every block (60 trials) based
on whether subjects exhibited matching behaviour ("block feedback"). Block
feedback was given in terms of matching performance index, and subjects
could receive a perfect score if their response probabilities matched the out-
come probabilities irrespective of whether their predictions were correct
within the sequence. The second group, "Feedback", included block feed-
back and trial-by-trial accuracy-based feedback: subjects’ responses were
circled red or green depending on whether they correctly predicted the
next symbol in the sequence. The third group, "Maximization Feedback",
included block feedback and trial-by-trial maximization feedback: subjects’
responses were circled red or green depending on whether they maximized
in the given context or not. The fourth group, "No Feedback", was a control
group with neither block nor trial-by-trial feedback.

Given the impact of feedback in simpler domains in the literature, it
was predicted that subjects would maximize in the conditions where any
feedback occurred: Main, Feedback, and Maximization Feedback. (Alter-
natively, subjects in the Main condition were predicted to do more match-
ing because of the directed block feedback encouraging matching.) The
No Feedback condition was expected to have the least amount of maxi-
mization because it included neither block nor trial-by-trial feedback. Since
directed feedback in the Maximization Feedback condition was explicitly
enforcing maximization behaviour, this condition was expected to have the
most maximizers.

The Feedback condition included trial-by-trial feedback as well as block
feedback and so was expected to encourage more maximizing behaviour
than the Main condition based on the idea that more feedback encourages
more maximization. Additional support for the idea that the Feedback
group would have more maximizers than the Main group derives from
the fact that Feedback participants were receiving accuracy-based feedback,
which implicitly encourages maximization since a maximization strategy
results in the most correct answers. Further evidence for Feedback having
more maximizers and Main having more matchers comes from Gao and
Corter (2015), who found that when subjects were rewarded if they per-
fectly predicted sequences rather than individual trials in a binary predic-
tion task, more matching behaviour occurred. Subjects predicted sequences
in the Main group, where they were given block feedback, and subjects
predicted individual trials in the Feedback group, where they were given
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trial-by-trial feedback, so it was expected that more matchers would appear
in the Main group and more maximizers in the Feedback group. Gao and
Corter (2015) hypothesize this strategy effect occurs because subjects trying
to perfectly predict longer sequences as opposed to trials adopt a goal of
perfect prediction. To achieve perfect prediction, subjects cannot use max-
imization, which achieves the highest possible score when the predicted
items are random but cannot achieve the 100% score achievable when pre-
dicted items are deterministic. We sought to ask whether subjects would
adopt similar strategies in a task more complicated than binary prediction.

With regards to hypotheses for the specific measures in this paradigm,
two different types of information could be extracted in this study: learn-
ing profiles and strategy. Due to the slow time course of learning in this
paradigm, subjects in all groups were expected to learn at approximately
the same rate, since maximization and matching strategies result in roughly
the same learning profiles. Thus the learning profile measures— matching
performance index averages, learning rate, and transition times— were ex-
pected to be similar across groups. Similarly, subjects were not expected to
generalise their performance differently across groups, so matching perfor-
mance index scores across all transfer tests were expected to be similar.

However, it was predicted that the feedback interventions would change
subjects’ use of strategies even in the complex paradigm, indicating that
subjects adjusted how they were searching for information and responding.
Strategy indices are measured in ICD (integral curve difference) and ICD
end values, where higher values indicate maximizing behaviour. It was
expected that Feedback and Maximization Feedback interventions would
push subjects towards maximization behaviour (higher ICD and ICD end
scores), more so in the Maximizing Feedback case. The least amount of
maximization was expected in the No Feedback group, and so ICD and
ICD end scores were expected to be lowest in that group. The Main group
was expected to have higher ICD and ICD end scores than the No Feedback
group for two reasons: first because any feedback would likely encourage
maximization, and second because subjects were receiving matching per-
formance index scores: directed feedback encouraging matching behaviour.
Matching behaviour produces higher ICD and ICD end scores than not pur-
suing either the matching or maximization strategy, so encouraging match-
ing behaviour was also expected to improve ICD and ICD scores for the
Main group compared to the No Feedback group.

3.2 Methods

Four experimental groups were compared: "Main", "Feedback", "Maximiza-
tion Feedback" and "No Feedback". In the Feedback and Maximization
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TABLE 3.1: Feedback Experimental Groups Summary.
Groups are in the following order: Main, Feedback (FB),
Maximization Feedback (Max. FB), No Feedback (No FB).
Abbreviations: "Acc." refers to accuracy-based feedback,

"Max." refers to maximization-based feedback.

Groups: Main FB Max. FB No FB

Temporal Jitter (up to %) 0 0 0 0
Markov Model main main main main
Trial-By-Trial Feedback n/a Acc. Max. n/a
Block Feedback yes yes yes n/a

Feedback groups where trial-by-trial feedback was given, the circle that ap-
peared when subjects made their prediction for the upcoming symbol on
each trial was coloured either green or red ("correct" / "incorrect"). In the
Feedback group, feedback was determined by the identity ("A", "B", "C",
or "D") of the next symbol in the sequence ("accuracy-based feedback"). In
the Maximization Feedback group, feedback was determined by the most-
likely symbol to appear based on the context probabilities ("maximization-
based feedback"). In the No Feedback group, neither trial-by-trial nor block
feedback was given (Table 5.1).

Subjects were trained over four days, and on the last day did a testing
sequence (test block, random block, test block), the probability transfer test
(the high- and low-probability statistical contingencies were switched), the
symbol transfer test (symbols were replaced by a new set of symbols), and
the speed transfer test (items were presented more quickly).

3.3 Results

3.3.1 Learning Profile

Matching Performance Index

Subjects had similar learning profiles across the different feedback interven-
tions. Matching performance index patterns across training were similar
across groups (Figure 3.1). Mean test scores (pre- and post-) were not sig-
nificantly different across feedback groups (mixed two-way ANOVA, Ses-
sion x Group, F(3,53) = 1.45, p = .24). There was not a main effect of Group
(F(3,53) = .71, p = .55). There was a significant main effect of Session, F(1,53)
= 370.06, p < .001 (Figure 3.2), which indicated that subjects improved from
pre-training to post-training.
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FIGURE 3.1: Behavioural performance. Matching perfor-
mance index for participants from the Main (n = 15, weak
learners: n = 3), Feedback (n = 17, weak learners: n = 1),
Maximization Feedback (n = 14, weak learners: = 0), and
No Feedback (n = 11, weak learners: n = 3) groups across
training (solid circles), the pre-training test (open circles)
and the post-training test (open circles). Higher scores on
the matching performance index indicates more matching
behaviour. Participants completed the task over five days.
Data is fitted for participants who improved during training
(black circles). Data is also shown for participants that did
not improve during training (grey circles). Random guess
baseline is indicated by a solid grey line across blocks. Error

bars indicate standard error of the mean.
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FIGURE 3.2: Behavioural test performance. Matching per-
formance index for participants from the Main (n = 15),
Feedback (n = 17), Maximization Feedback (n = 14), and No
Feedback (n = 11) groups for pre-training performance and
post-training performance. Higher scores on the matching

performance index indicates more matching behaviour.
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FIGURE 3.3: Learning curves. Mixture coefficient weights
for level-1 compared to level-0 model for participants from
Main (n = 15), Feedback (n = 17), Maximization Feedback (n
= 14), and No Feedback (n = 11) groups. The average curve
is shown as a thicker line. Weights closer to 1 indicate that
the subject is more likely to be making predictions based on
a Markov level-1 model; weights closer to 0 indicate that the
subject is more likely to be making predictions based on a

Markov level-0 model.
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FIGURE 3.4: Mean learning indices for participants from
Main (n = 15), Feedback (n = 17), Maximization Feedback
(n = 14), and No Feedback (n = 11) groups. Learning rate
is the slope of the learning sigmoid curve; transition time
is the time point at which y-axis of the learning curves is
equal to .5 (the weights for level-1 and level-0 Markov mod-
els are both equal to .5). Higher learning rates indicate a
faster rate of learning; lower transition time values indicate

earlier learning.

Learning Indices

Learning profiles appeared similar across groups (Figure 3.3). Mean learn-
ing rates were not significantly different across groups (one-way ANOVA,
F(3,53) = .76, p = .52), so subjects did not learn faster in different groups
(Figure 3.4). Mean transition times were not significantly different across
groups (one-way ANOVA, F(3,53) = .60, p = .62), so subjects did not learn
earlier in different groups (Figure 3.4).

Strategy

Strategy profiles were affected by feedback manipulations across groups
(Figure 3.5). ICD scores were significantly different across groups (one-way
ANOVA, mean square between groups = .132, F(3,53) = 2.80, p = .049). Post-
hoc Tukey HSD tests showed no significant differences between individual
groups, but narrowly missed significance (Main vs. FB: p = .068, FB vs No
FB: p = .097) (Figure 3.6). ICD end scores were significantly different across
groups (one-way ANOVA, mean square between groups = .264, F(3,53) =
2.80, p = .049). Post-hoc Tukey HSD tests showed no significant differences
between individual groups, but narrowly missed significance (Main vs. FB:
p = .082; FB vs. No FB: p = .091.) (Figure 3.6). Thus strategy differed across
groups but did not significantly differ between any two specific groups.
However, the greatest differences between two groups were between the
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FIGURE 3.5: Strategy choice. ∆KL divergence between
model matching and model maximization strategies for
participants from the Main (n = 15), Feedback (n = 17), Max-
imization Feedback (n = 14), and No Feedback (n = 11)
groups. KL divergence is a measure of how different the
probability distributions that the subject is using to make
predictions are from the probability distributions of predic-
tions made using a perfect maximization strategy and a per-
fect matching strategy. The average curve is shown as a
thicker line. Exact matching (dashed line) and maximiza-
tion models (solid grey line) are plotted. More negative KL

scores indicate a strategy closer to maximization.
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FIGURE 3.6: Mean strategy indices for participants from the
Main (n = 15), Feedback (n = 17), Maximization Feedback (n
= 14), and No Feedback (n = 11) groups. ICD (integral curve
difference) and ICD end measure the signed area between
the subjects’ strategy curve and predictions made using a
perfect matching strategy. Higher ICD and ICD end values
indicate a strategy closer to maximization. ICD and ICD
end values equal to zero indicate a perfect matching strat-

egy.

Main and No Feedback conditions and the Feedback condition; the most
maximization occurred in the Feedback condition.

3.3.2 Transfer

Probability Transfer Test

In the probability transfer test the high- and low-probability statistical con-
tingencies were exchanged. Improvement from the pre-training test to the
untrained transfer test occurred (mixed two-way ANOVA, significant main
effect of Training, F(1,53) = 7.90, p = .01), showing some generalisation oc-
curred from training to the probability transfer condition. There was not
an interaction effect of Training x Group, F(1,53) = 1.10, p = .36, nor a main
effect of Group, F(3,53)= .85, p = .48, indicating that performance did not
significantly differ between groups (Figure 3.7).

Symbol Transfer Test

Improvement from the pre-training test to the untrained transfer test oc-
curred (mixed two-way ANOVA, significant main effect of Training, F(1,53)
= 147.59, p < .001), showing generalisation occurred from training to the
symbol transfer condition. There was not an interaction effect (Training x
Group, F(3,53) = 2.58, p = .06) nor a main effect of Group, F(3,53) = .08, p =
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(A) Main

(B) Feedback

(C) Maximization Feedback

(D) No Feedback

FIGURE 3.7: Transfer test performance for participants from
the Main (n = 15), Feedback (n = 17), Maximization Feed-
back (n = 14), and No Feedback (n = 11) groups. Higher
matching performance index values indicate more transfer.
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.97, indicating that performance did not significantly differ between groups
(Figure 3.7).

Speed Transfer Test

Improvement from the pre-training test to the untrained transfer test did
not occur (mixed two-way ANOVA, no significant main effect of Training,
F(1,53) = 3.81, p = .056), showing subjects did not generalise from training to
the speed transfer condition. There was not an interaction effect (Training x
Group, F(3,53) = 2.56, p = .07) nor a main effect of Group, F(3,53) = .13, p =
.94, indicating that performance did not significantly differ between groups
(Figure 3.7).

Direct Transfer Comparisons

This information is the same as presented in (Figure 3.7), but shows a direct
comparison of the transfer conditions between groups.

Mean performance in the probability transfer test was not significantly
different across groups (one-way ANOVA, F(3,53) = .87, p = .46) (Figure 3.8(b)).

Mean performance in the symbol transfer test was not significantly dif-
ferent across groups (one-way ANOVA, F(3,53)= .85, p = .47) (Figure 3.8(c)).

The speed transfer test did not show an interaction effect between Ses-
sion x Group (mixed two-way ANOVA, F(3,53) = 1.71, p = .18) nor was
there a main effect of Group (F(3,53) = .49, p = .69), indicating there were
no significant differences between groups. However, there was a main ef-
fect of Session (F(1,53) = 21.92, p < .001) indicating some improvement on
the transfer task from pre-training transfer test to post-training transfer test
(Figure 3.8(d)).

3.4 Discussion

As predicted, learning profiles across groups were similar: differences in
test performance, learning rate, and transition times did not reach signif-
icance. Probability and symbol transfer test performance was improved
from pre-training test performance, demonstrating generalisation. Speed
transfer test performance improved between the speed pretest and speed
posttest, though perhaps the difficulty of this transfer test prevented strong
generalisation. As expected, there were no significant differences between
groups with regards to transfer. Most interestingly, strategy profiles were
significantly different across groups and while Post-hoc Tukey HSD tests
showed no significant differences between individual groups, these results
narrowly missed significance. This pattern of results indicates that subjects
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(A) Pre-training and post-training performance for comparison

(B) Probability Transfer

(C) Symbol Transfer

(D) Speed Transfer

FIGURE 3.8: Behavioural test and transfer test performance
for participants from the Main (n = 15), Feedback (n = 17),
Maximization Feedback (n = 14), and No Feedback (n = 11)
groups. Higher matching performance index values indi-

cate more transfer.
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in the Feedback group maximized much more than subjects in the Main or
No Feedback groups.

As expected from the literature, subjects in the Feedback and Maximiza-
tion Feedback groups tended to maximize more than subjects in the No
Feedback groups (Figure 3.6). What was more unexpected was that the
subjects in the Main group had the same ICD and ICD end scores as those
in the No Feedback group, whereas any sort of feedback at all (like the block
feedback present in the Main condition) was expected to encourage maxi-
mization behaviour, and the directed matching feedback was expected to
encourage matching behavior. Matching and maximizing strategies both
increase ICD and ICD end scores, so subjects in the Main group should
have had higher scores than those in the No Feedback condition. This pat-
tern of results could be due to the complication of the paradigm, the hy-
pothesis that directed block feedback does not have a strong effect, or the
infrequency of directed block feedback. In the Gao and Corter (2015) study,
feedback in the sequence condition was given every 4 trials, whereas in this
study feedback was only given every 60 trials.

Another result emerged that was not as predicted: subjects in the Maxi-
mizing Feedback group maximized less than subjects in the Feedback group.
This finding did not reach significance, but seems to speak to the role of
any kind of trial-by-trial feedback in encouraging maximization, directed or
not. Future studies should examine whether feedback in any form encour-
ages maximization behavior and the unpredicted directionality observed
here was just noise, or if accuracy-based feedback specifically encourages
maximization more than maximization-based feedback.

3.4.1 Directed but conflicting feedback: limitations of the study

Subjects have the ability to adjust their maximization and matching strate-
gies in tasks where either one or the other is optimal (Schulze, Ravenzwaaij,
and Newell, 2015), and in this study there was a major confound: the "opti-
mal" strategy, as defined by directed feedback, rewarded various and con-
flicting strategies. In the Feedback task, maximization was implicitly re-
warded in the trial-by-trial feedback (in that maximization would produce
the highest number of correct answers) but matching was rewarded in the
block feedback. In the Maximization Feedback task, maximization was
explicitly rewarded in the trial-by-trial feedback, but matching was again
rewarded in the block feedback. The fact that the Maximizing Feedback
subjects had fewer maximizers than the Feedback subjects hints at the com-
plexity of different types of interacting and conflicting feedback (see Kluger
and DeNisi (1996)), and makes it difficult to draw conclusions about the ef-
fects of directed feedback in this paradigm. Future studies could employ a
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more controlled version of this task where task demands were not contra-
dictory: where subjects were singularly encouraged to match or maximize
by feedback that incentivised matching, accuracy, and maximization. This
experiment would help to isolate which components of feedback subjects
were most sensitive to.

3.4.2 What are subjects learning?

Regardless of its cause, the fact that feedback changed subject behaviour
prompts the question of whether feedback solely encourages subjects to re-
spond differently or whether it affects the information they process. While
it was hoped that feedback would affect subjects’ learning, there was only
one response measure in this paradigm: which symbol was predicted. This
response measure offered higher precision than those of previous statistical
learning paradigms, but it too is limited in answering the question of what
subjects are learning.

Consider two learners, one who is responding in a maximizing manner
and another who is responding in a matching manner. One could assume
that both subjects have learned the same statistical contingencies— those
required for matching— but that the maximizer is ignoring that knowl-
edge. This would make their responses a function of decision theory; both
subjects have learned the same things. On the other hand, perhaps the
maximizer discovered the maximizing strategy fairly early on, and did not
bother to learn the lower-probability contingencies that the matcher has
learned. In this case, the maximizer has stored far less knowledge than
the matcher and their responses reflect the knowledge they are represent-
ing. Both of these possibilities are identical given the responses, but one
set of responses reflects decision theory and the other reflects knowledge
representation. This interaction of decision-making and targeted learning
illustrates the puzzle of learning, and limits what can be concluded about
either knowledge representation or decision-making independently.

3.4.3 Individual differences and future directions

Finally, there are some trends that can be captured via the response measure
but are not easily presented because they represent individual differences.
Consider a maximizing subject who had started learning all of the contin-
gencies, but forgot them as soon as she/he settled on the maximization
strategy; people tend to remember irrelevant distractors less when they are
in structured sequences compared to when they are in random sequences
(Otsuka and Saiki, 2016) and the maximizer could have decided the lower-
probability contingencies were "irrelevant" within the structure they had
established. This switch from matcher to maximizer is detectable within
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the paradigm. However, this sort of switching behaviour is not captured
in summary statistics, and the border is nebulous between maximizing,
matching, and having a first-order model understanding but an incorrect
grasp of context contingencies. All of the summary metrics used in this
study— matching performance index, learning rate, ICD— are continuous,
which allows individual variability to be identified but not easily classified.
These continuous measures allow interesting correlations to be performed
(see Chapter 6) and open questions to future investigation but are difficult
to summarize.

3.4.4 Conclusions

In this set of experimental groups, we asked whether people changed their
strategies when exposed to situations with different desired outcomes. Sub-
jects did engage the prediction task differently in response to feedback,
maximizing more even while learning proceeded at similar rates across
groups. Further work remains to be done investigating the effects of di-
rected feedback, in addressing the question of behavioural responses com-
pared to learning, and in capturing individual differences in strategies. This
work would further contribute to the goal of understanding how people sit-
uationally adjust their strategies to direct their statistical learning.
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Chapter 4

Temporal Jitter

4.1 Introduction

We are interested in the strategies that people use to learn information. One
of the fundamental principles of statistical learning and learning in gen-
eral is that items can be associated with each other when they are close
together in time. When these temporal relationships are disrupted, do peo-
ples’ learning strategies change? We sought to determine whether sub-
jects changed their strategies when they were faced with stimuli presented
with temporal jitter. We presented regularly-presented stimuli, stimuli with
some temporal jitter, and stimuli that were presented with maximal irregu-
larity. We hypothesized that changing the temporal relationships between
items would cause subjects to adopt different strategies. Specifically, we ex-
pected that subjects would perform more poorly with irregularly-presented
stimuli and fail to adopt optimal strategies.

4.1.1 Temporal jitter decreases predictive performance

Regular presentation of material has been shown to increase performance.
For example, the concept of "temporal expectancy" describes the anticipa-
tion from seeing a cue associated with a target and then seeing a target
appear. This cue can be an explicit and independent cue, or an expectation
built up by seeing previous items appear in a regular rhythm. The interval
between the cue and the target governs reaction times (Woodrow, 1914),
and people tend to respond faster in detection and discrimination tasks as
the variability of this interval decreases (reviewed in Niemi and Näätänen
(1981), e.g. Correa, Lupiáñez, et al. (2004) and Correa, Lupianez, and Tudela
(2006)). There is a rich literature indicating that temporal expectation facili-
tates performance; see Nobre, Correa, and Coull (2007) for a review. On the
explicit cue side, temporal expectancies decrease perceptual discrimination
thresholds (Lasley and Cohn, 1981; Westheimer and Ley, 1996; Rolke and
Hofmann, 2007). On the rhythmic presentation side, perceptual judgments
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(e.g. of time intervals) improve when items appear at their expected time
point in a rhythmic sequence (Jones and M. Boltz, 1989; M.G. Boltz, 1993;
Large and Jones, 1999; Barnes and Jones, 2000; Jones, Moynihan, et al., 2002;
Guo et al., 2004; Doherty et al., 2005).

For a detailed example, in Jones, Moynihan, et al. (2002) subjects were
better at judging pitch (the main task) when there were regular (as op-
posed to irregular) temporal background auditory cues leading up to the
pitch judgment, even though subjects were told that the background cues
were irrelevant and to ignore them. However, these background cues still
influenced subjects’ performance and anticipatory attention. The authors
report that subjects listening to the irregular background cues had flatter
expectancy profiles compared to subjects who were attentionally primed
for the correct time that the stimulus would appear. In another interesting
example, Olson and Chun (2001) observed cuing effects with a temporal
sequence that was irregular in time but predictably irregular (i.e. stimuli
might appear for 80ms, 666ms, 1066ms, 80ms and then loop again). Pre-
dictable events can generate temporal expectancies even when complex.

There are neural markers of attention in time, including neural oscilla-
tions that align with temporal expectations (e.g. Praamstra et al. (2006) and
Rohenkohl and Nobre (2011), see Arnal and Giraud (2012) for a review)
and predict perceptual performance (Busch, Dubois, and VanRullen, 2009;
Cravo et al., 2013). Regularly- versus irregularly-presented stimuli generate
measurably different patterns of neural activity (Zanto, Snyder, and Large,
2006; Lange, 2010; Schwartze et al., 2011).

The jitter used in the current set of experimental groups derailed tempo-
ral expectancy because it was added stochastically to sequences to prevent
predictability. Based on the body of work outlined here, it would be reason-
able to expect that temporal jitter would decrease performance and result
in the adoption of strategies that produced less desirable outcomes.

4.1.2 Cognitive load inhibits statistical learning

The fact that violation of temporal expectancies results in worse perfor-
mance suggests that the surprise from violations distracts attention away
from the main task. Given the idea of attentional distraction, a useful frame-
work in thinking about the problem could be cognitive load. It could rea-
sonably be expected that temporal jitter would increase cognitive load on
subjects, and cognitive load has been shown to inhibit statistical learning.
With regards to artificial language studies, in Saffran, Newport, Aslin, et al.
(1997) compared to Saffran, Newport, and Aslin (1996), adults performed
poorly (59% accuracy) on a language learning task when they completed a
distractor colouring task compared to when they did not have a distractor
task (76% accuracy). T. Fernandes, Kolinsky, and Ventura (2010) found that
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cognitive load decreased performance: subjects in a low-cognitive load con-
dition learned both high- and low- transitional probability words, but sub-
jects in the high-cognitive load condition learned only the high-transitional
probability words. Toro, Sinnett, and Soto-Faraco (2005) conducted a sim-
ilar task with a similar finding: subjects were not able to segment words
when they were simultaneously engaging in a high-load distractor task.
High cognitive load has also been shown to impair performance in paradigms
like the serial reaction time task (Rowland and Shanks, 2006), and other
instances are summarized in Perruchet and Pacton (2006). In Baker et al.
(2014), fewer subjects could perform their temporal sequence task under
high cognitive load. These results suggest that temporal jitter could pro-
duce worse performance and poorer-performing strategies.

4.1.3 Jitter as increasing chunking

Finally, one of the most important considerations for how temporal jitter
might affect learning is the hypothetical formation of chunks. Before we ad-
dress chunking, we must ask: how do people learn temporal relationships?
In the artificial grammar learning literature, the question of "what are peo-
ple learning?" has been extensively explored. Originally it was argued that
subjects were extracting rules from artificial grammars, and applying those
rules to determine grammaticality at test (Reber, 1967). Since then argu-
ments have been raised that what people are learning is actually simpler:
some form of similarity mapping between training and test exemplars (e.g.
Vokey and Brooks (1992)). In addition, since the artificial grammar learn-
ing stimuli are composed of relatively short sequences, it is commonly ac-
cepted that some aspect of what subjects are learning is chunks (e.g. Lotz
and Kinder (2006), see Perruchet and Pacton (2006)), often bigrams or tri-
grams.

The idea of chunking, or learning short sequences of items, is an intu-
itive way of storing and remembering information. Temporal jitter could
be responsible for forming chunks: placing certain items closer together
temporally and others further apart. Dividing long sequences into chunks
could result in faster learning and strategies that result in better perfor-
mance, especially if these chunks align with the sequence structure of the
task. On the other hand, if these chunks do not align with the sequence
structure of the task— if they group items in trigrams, for example, when
the true structure is a quartet— they may slow learning as subjects become
less flexible in what rules they learn. The question of what effect temporal
jitter will have on chunking is further complicated by the fact that temporal
jitter in this task is randomly applied, so that it is impossible to know be-
forehand the structure of chunks that will emerge and the chunks change
on every trial.
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4.1.4 Experiment

In this section we set out to ask whether subjects’ strategies would change
when the temporal relationships between items were disturbed. Since tem-
poral relationships drive almost all statistical learning (excepting spatial vi-
sual statistical learning), this manipulation was expected to produce reli-
able differences in behaviour. Based on the detrimental effects of irregular
presentation in the literature, it was expected that subjects would perform
more poorly when temporal jitter was added to stimulus presentation. Ad-
ditional evidence for the hypothesis that temporal jitter would reduce per-
formance comes from the literature on the effects of cognitive load assum-
ing that cognitive load increases as temporal jitter is added.

Independent groups of subjects observed stimuli with three degrees of
temporal jitter. The first group, "Main", was previously described, had no
jitter, and served as the control group. The stimuli in the "Jitter" and "Aug-
mented Jitter" groups both had randomly-allocated temporal jitter, but in
the Augmented Jitter group jitter was applied in intervals that spanned a
wider time range and were more finely sampled. Specifically, in the Main
group the inter-stimulus interval (ISI) between symbols was 400ms, in the
Jitter group ISI ranged from 200-600ms in intervals of 100ms, and in the
Augmented Jitter group ISI ranged from 200-700ms in intervals of 20ms.

It was hypothesized that subjects would perform progressively more
poorly with increasing amount of jitter. Specifically, average matching per-
formance index was expected to be the highest in the Main group and the
lowest in the Augmented Jitter group. Learning rate was expected to follow
a similar trend: highest scores in the Main group while the worst perfor-
mance and lowest scores would be found in the Augmented Jitter group.
Transition times were expected to be lowest in the Main group, indicat-
ing fastest learning, and highest in the Augmented Jitter group. With re-
gards to strategies, subjects in the Main group were expected to have high
ICD and ICD end values showing successful acquisition of maximizing and
matching strategies compared to the Augmented Jitter group, which were
expected to have the lowest and possibly negative ICD and ICD end values
showing a failure to acquire successful matching or maximizing strategies.
With regards to transfer tests— probability, symbols, and speed— subjects
were again expected to have progressively poorer generalisation as tem-
poral jitter increased. Scores were hypothesized to be highest in the Main
group, lower in the Jitter group, and lowest in the Augmented Jitter group.
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TABLE 4.1: Jitter Experimental Groups Summary. Groups
are in the following order: Main, Jitter (Jit.), Augmented

Jitter (Aug. Jit.).

Groups: Main Jit. Aug. Jit.

Temporal Jitter (up to %) 0 40 60
Markov Model main main main
Trial-By-Trial Feedback n/a n/a n/a
Block Feedback yes yes yes

4.2 Methods

Three experimental groups were compared: "Main", "Jitter", and "Augmented
Jitter". Different amounts of temporal jitter were added to the presented se-
quences for the Jitter group (up to 40% of possible jitter) and Augmented
Jitter group (up to 60% of possible jitter). Specifically, subjects in the Main,
Jitter, and Augmented Jitter groups saw stimuli for 100ms. However, in the
Main Group, the inter-stimulus interval (ISI) was always 400ms, while this
ISI was randomly varied for the Jitter and Augmented Jitter groups. In the
Jitter group, ISI blocks had mean 400ms but were uniformly and randomly
distributed across the values
200/300/400/500/600ms (Jitter). In the Augmented Jitter group, ISI blocks
had mean 400ms but were uniformly and randomly distributed across the
values 100/120/. . . /680/700ms. All groups had block feedback (encourag-
ing maximization) (Table 5.1).

Subjects were trained over four days, and on the last day did a testing
sequence (test block, random block, test block), the probability transfer test
(the high- and low-probability statistical contingencies were switched), the
symbol transfer test (symbols were replaced by a new set of symbols), and
then the speed transfer test (items were presented more quickly).

4.3 Results

4.3.1 Learning Profile

Matching Performance Index

Subjects had similar learning profiles across the different levels of jitter.
Matching performance index patterns across training were similar across
groups (Figure 4.1). Mean test scores (pre- and post-) were not significantly
different across jitter groups (mixed two-way ANOVA, Session x Group,
F(2,41) = .27, p = .76). There was not a main effect of Group (F(2,41) = 1.66,
p = .20). There was a significant main effect of Session, F(1,41) = 183.31, p <
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FIGURE 4.1: Behavioural performance. Matching perfor-
mance index for participants from the Main (n = 15, weak
learners: n = 3), Jitter (n = 14, weak learners: n = 4), and
Augmented Jitter (n = 15, weak learners: = 3) groups across
training (solid circles), the pre-training test (open circles)
and the post-training test (open circles). Higher scores on
the matching performance index indicates more matching
behaviour. Participants completed the task over five days.
Data is fitted for participants who improved during training
(black circles). Data is also shown for participants that did
not improve during training (grey circles). Random guess
baseline is indicated by a solid grey line across blocks. Error

bars indicate standard error of the mean.

FIGURE 4.2: Behavioural test performance. Matching per-
formance index for participants from the Main (n = 15), Jit-
ter (n = 14), and Augmented Jitter (n=15) participants for
pre-training performance and post-training performance.
Higher scores on the matching performance index indicates

more matching behaviour.
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FIGURE 4.3: Learning curves. Mixture coefficient weights
for level-1 compared to level-0 model for participants from
individual Main (n = 15), Jitter (n = 14), and Augmented Jit-
ter (n=15) groups. The average curve is shown as a thicker
line. Weights closer to 1 indicate that the subject is more
likely to be making predictions based on a Markov level-1
model; weights closer to 0 indicate that the subject is more
likely to be making predictions based on a Markov level-0

model.

.001 (Figure 4.2), which indicated that subjects improved from pre-training
to post-training.

Learning Indices

Learning profiles appeared to show improved learning (higher learning
rates, lower transition times) in groups with more temporal jitter (Figure 4.3).
However, mean learning rates were not significantly different across groups
(one-way ANOVA, F(2,41) = 2.32, p = .11), so subjects did not quantitatively
learn faster in different groups (Figure 4.4). Mean transition times were not
significantly different across groups (one-way ANOVA, F(2,41) = 1.37, p =
.27), so subjects did not quantitatively learn earlier in different groups (Fig-
ure 4.4).

To test for a linear trend between groups, groups were assigned a con-
tinuous measure for jitter: the stimuli for the Main group had up to 0% jitter
and so was assigned 0, the stimuli for the Jitter group had up to 40% jitter
so was assigned 40, and the stimuli for the Augmented Jitter group had up
to 60% jitter and so was assigned 60. Linear regression with learning rate as
the dependent variable, and a constant and the degree of jitter as indepen-
dent variables, was run. Learning rate across groups was not described by
a linear relationship (R = .24, F(1,42) = 2.50, p = .12). Linear regression with
transition time as the dependent variable, and a constant and the degree of
jitter as independent variables, was run. Transition time across groups was
not described by a linear relationship (R = .25, F(1,42) = 2.80, p = .10).
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FIGURE 4.4: Mean learning indices for participants from
Main (n = 15), Jitter (n = 14), and Augmented Jitter (n=15)
groups. Learning rate is the slope of the learning sigmoid
curve; transition time is the time point at which y-axis of
the learning curves is equal to .5 (the weights for level-1 and
level-0 Markov models are both equal to .5). Higher learn-
ing rates indicate a faster rate of learning; lower transition

time values indicate earlier learning.

FIGURE 4.5: Strategy choice. ∆KL divergence between
model matching and model maximization strategies for
participants from the Main (n = 15), Jitter (n = 14), and Aug-
mented Jitter (n=15) groups. KL divergence is a measure
of how different the probability distributions that the sub-
ject is using to make predictions are from the probability
distributions of predictions made using a perfect maximiza-
tion strategy and a perfect matching strategy. The average
curve is shown as a thicker line. Exact matching (dashed
line) and maximization models (solid grey line) are plotted.
More negative KL scores indicate a strategy closer to maxi-

mization.
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FIGURE 4.6: Mean strategy indices for participants from the
Main (n = 15), Jitter (n = 14), and Augmented Jitter (n=15)
groups. ICD and ICD end measure the signed area between
the subjects’ strategy curve and predictions made using a
perfect matching strategy. Higher ICD and ICD end values
indicate a strategy closer to maximization. ICD and ICD
end values equal to zero indicate a perfect matching strat-

egy.

Strategy

Strategy profiles appeared to show maximization increasing across groups
as jitter was increased (Figure 4.5). However, ICD scores were not signif-
icantly different across groups (one-way ANOVA, F(2,41) = 2.12, p = .13)
(Figure 4.6). ICD end scores were not significantly different across groups
(one-way ANOVA, F(2,41) = 1.25, p = .30) (Figure 4.6).

Because there appeared to be a trend in which temporal jitter encour-
aged maximization, we tested for a linear trend between experimental groups.
Groups were assigned a continuous measure for jitter: the stimuli for the
Main group had up to 0% jitter and so was assigned 0, the stimuli for the
Jitter group had up to 40% jitter so was assigned 40, and the stimuli for the
Augmented Jitter group had up to 60% jitter and so was assigned 60. Lin-
ear regression with ICD as the dependent variable, and a constant and the
degree of jitter as independent variables, was run. ICD across groups was
described by a linear relationship (R = .31, F(1,42) = 4.34, p = .043). This
finding indicated that subjects in the experimental groups with more jitter
followed strategies closer to maximization. Linear regression with ICD end
as the dependent variable, and a constant and the degree of jitter as inde-
pendent variables, was run. ICD end across groups was not described by a
linear relationship (R = .24, F(1,42) = 2.55, p = .12), though it followed the
same trend as ICD across groups.
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4.3.2 Transfer

Probability Transfer Test

In the probability transfer test the high- and low-probability statistical con-
tingencies were exchanged. Improvement from the pre-training test to the
untrained transfer test did not occur (mixed two-way ANOVA, no main
effect of Training, F(1,41) = .90, p = .35), indicating no generalisation oc-
curred from training to the probability transfer condition. There was not
an interaction effect of Training x Group, F(2,41) = 1.67, p = .20, nor a main
effect of Group, F(2,41)= 1.00, p = .38, indicating that performance did not
significantly differ between groups (Figure 4.7).

Symbol Transfer Test

Improvement from the pre-training test to the untrained transfer test oc-
curred (mixed two-way ANOVA, significant main effect of Training, F(1,41)
= 66.77, p < .001), showing generalisation occurred from training to the
symbol transfer condition. There was not an interaction effect (Training
x Group, F(2,41) = .70, p = .50) nor a main effect of Group, F(2,41) = .79, p =
.46, indicating that performance did not significantly differ between groups
(Figure 4.7).

Speed Transfer Test

Improvement from the pre-training test to the untrained transfer test did
not occur (mixed two-way ANOVA, no main effect of Training, F(1,41) =
.31, p = .58), indicating no generalisation occurred from training to the
speed transfer condition. There was not an interaction effect (Training x
Group, F(2,41) = 3.12, p = .06) nor a main effect of Group, F(2,41) = .24, p =
.79, indicating that performance did not significantly differ between groups
(Figure 4.7).

Direct Transfer Comparisons

This information is the same as presented in (Figure 4.7), but shows a direct
comparison of the transfer conditions between groups.

Mean performance in the probability transfer test was not significantly
different across groups (one-way ANOVA, F(2,41) = 1.15, p = .33) (Fig-
ure 4.8(b)).

Mean performance in the symbol transfer test was not significantly dif-
ferent across groups (one-way ANOVA, F(2,41)= .05, p = .96) (Figure 4.8(c)).

The speed transfer test did not show an interaction effect between Ses-
sion x Group (mixed two-way ANOVA, F(2,41) = 2.54, p = .09) nor a main
effect of Group (F(2,41) = .31, p = .74), indicating there were no significant
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(A) Main

(B) Jitter

(C) Augmented Jitter

FIGURE 4.7: Transfer test performance for participants from
the Main (n = 15), Jitter (n = 14), and Augmented Jitter
(n=15) groups. Higher matching performance index values

indicate more transfer.
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(A) Pre-training and post-training performance for comparison

(B) Probability Transfer

(C) Symbol Transfer

(D) Speed Transfer

FIGURE 4.8: Behavioural test and transfer test performance
for participants from the Main (n = 15), Jitter (n = 14), and
Augmented Jitter (n=15) groups. Higher matching perfor-

mance index values indicate more transfer.
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differences between groups. However, there was a main effect of Session
(F(1,41) = 12.25, p < .001) indicating some improvement on the transfer task
from pre-training transfer test to post-training transfer test (Figure 4.8(d)).

4.4 Discussion

In this section we asked whether subjects would change their strategies
when a fundamental element of learning— temporal relationships— was
altered by introducing temporal jitter. We hypothesized that subjects would
have poorer performance in conditions of more temporal jitter. Specifically,
we expected lower performance indices, lower learning rates, and higher
transition times in the Augmented Jitter group, middling performance for
the Jitter group, and opposite performance for the Main group. In terms of
strategy, we expected lower ICD and ICD end values in the Augmented Jit-
ter group and higher ICD and ICD end values in the Main group showing
acquisition of successful maximizing and matching strategies. In terms of
generalisation, scores were expected to be lowest in the Augmented Jitter
group and highest in the Main group.

Instead, we observed that learning profiles across experimental groups
were similar: differences in test performance, learning rate, and transition
times did not reach significance, and follow-up statistical tests with learn-
ing rate confirmed this finding. Learning rates and transition times did not
follow a linear relationship across groups. Strategy profiles also appeared
somewhat similar: differences in ICD and ICD end did not reach signifi-
cance, and follow-up tests with ICD and ICD end confirmed this finding.
Symbol transfer test performance was improved from pre-training test per-
formance, demonstrating generalisation. However, there were no signifi-
cant differences between groups with regards to transfer. Another measure
of poorer performance in groups with temporal jitter could have been an
increased number of weak learners, but these numbers were similar across
groups (the number of weak learners in the Main group was 3/18, Jitter
was 4/18, and Augmented Jitter was 3/18.)

However, the most interesting result was that while strategy differences
across groups were not significant, there was a qualitative trend whereby
ICD increased as temporal jitter increased. This finding was supported
quantitatively as ICD was described by a positive linear trend in groups
with increasing jitter, meaning that subjects who were exposed to more jit-
ter adopted strategies closer to maximizing. The same positive linear trend
was shown for ICD end, though it did not reach significance. These trends
were also observed in the learning profiles: a close-to-significant positive
trend in learning rate (higher learning rates for the groups with more jitter),
and a close-to-significant negative trend in transition time (lower transition
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times for the groups with more jitter). Given the small number of subjects
per group and individual variability, it is remarkable that these trends— all
in one direction— emerged in all of the response measures. The results are
consistent and opposite from those predicted: subjects in groups with more
temporal jitter performed better than subjects in groups with less temporal
jitter.

4.4.1 Why did jitter produce stronger learners? Hardness hypoth-
esis

It was predicted that jitter would make subjects weak learners; however,
the pattern of results across learning rate, transition time, and strategy mea-
sures all support the conclusion that irregularly-presented stimuli improves
performance. Previous studies have indicated that irregularly-presented
stimuli often decrease performance. Why would this unusual pattern of
results emerge?

One hypothesis harks back to the "maximization as a dumb strategy"
perspective discussed in Chapter 1. This argument states that maximizing
is easier than matching, and in the experiment described here, it is certainly
easier to remember one relationship for each context— "C" usually follows
"B"— rather than two relationships for each context— "A" follows "B" 20%
of the time and "C" follows "B" 80% of the time). It is possible that when
faced with jitter, subjects are placed under increased cognitive load and
are overwhelmed. Flustered, they may have decided to settle on the easier
maximization strategy, which would explain this pattern of results: higher
ICD and ICD end values, meaning more maximizers, and a faster learning
rate and earlier transition time as subjects forwent trying to learn a compli-
cated matching strategy for learning a simpler maximizing strategy. This
explanation would fit into the context of the literature. This pattern of re-
sults would then provide a powerful example of how increasing temporal
jitter forces subjects to progressively adopt strategies that optimize their
performance in complex learning problems.

Further testing of this "hardness" hypothesis is necessary. As a control
condition, more traditional cognitive load should be applied to a separate
group of participants to observe if the same pattern of responses— more
cognitive load, more maximization and faster learning— occurs. An in-
teresting interaction effect could also occur if additional and independent
cognitive load were applied to all of this study’s groups. One would ex-
pect more maximization to emerge among the low temporal jitter groups,
but that additional maximization would not occur among the high tempo-
ral jitter groups. If applying additional cognitive load resulted in the same
increase in maximization across all groups, this would suggest that subjects
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in the Augmented Jitter condition had not reached their maximum or opti-
mal cognitive load, and should be placed under more pressure to optimize
performance.

4.4.2 Why were effects weak? People as probabilistically rational
learners

The pattern of results observed— that subjects exposed to more temporal
jitter performed better— was consistent across measures but weak. One
possible reason for these weak results could be the effects of small sam-
ple sizes and high individual variability. Another reason is the small dif-
ferences between the jitter conditions— in the Jitter condition, ISIs varied
randomly between 200 and 600ms, while in the Augmented Jitter condi-
tion, ISIs varied randomly between 100 and 700ms. These were relatively
small manipulations, and the fact that differences could be observed be-
tween groups at all speaks to the power of these interventions.

However, to take another tack, an intriguing explanation for why there
were not large differences across experimental groups— groups with in-
creasing amounts of jitter— is the idea that it is rational to ignore uninfor-
mative jitter. If temporal jitter is treated as just a "surface feature" of the
stimuli, like the spatial position / colour / shape of the symbols, rather
than as a fundamental property governing the essential temporal relation-
ships between items, then predictions change. If temporal jitter were just
a surface feature of the stimuli, like colour, then temporal jitter would be
a completely non-informative feature since it is randomized, and perfor-
mance would be expected to be roughly the same across all experimental
groups.

If jitter is considered an informationally-valueless surface feature, then
it makes rational sense for subjects to ignore it and perform equally well
with or without it. Aslin and Newport (2012) have overviewed evidence
for the idea that people are rational probabilistic learners who base their
generalisations on context: people use the reliability / uniqueness of cues
to find the right cues for learning structure. In the surface-feature perspec-
tive, temporal jitter is a form of noise in this task— it was not informative
for predicting the next symbol, so subjects should logically have ignored
it. People have widely demonstrated this rational learning ability. For ex-
ample, in Gerken (2006) and Gerken (2010), infants in an artificial language
learning paradigm learned the abstract rule that was the most specific but
still reliable given the data. Similarly, Reeder, Newport, and Aslin (2009)
and Reeder, Newport, and Aslin (2010) investigated artificial word learn-
ing in adults and found that generalisation proceeds in a probabilistically
rational way. Turk-Browne, Isola, et al. (2008) has found that subjects are
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sensitive to the amount of informational covariance between two features,
shape and colour, and adjust their behaviour accordingly.

If temporal jitter is considered a surface feature, a human capacity for
dismissing it as informationally-irrelevant seems rooted in strong drives
for rational thinking and behaviour. If this is the case, then it would not be
surprising that subjects would not change their behaviour overmuch when
faced with stimuli that were presented in a randomly-irregular way. Sub-
jects would be expected to have similar performance across experimental
groups.

This hypothesis needs further testing. Temporal relationships seem too
fundamental to reduce to a surface feature, and it seems likely that small
sample sizes are the more realistic reason for why the effect sizes across ex-
perimental groups were not large. To test the small sample sizes hypothesis,
more subjects could be tested. To test the "surface feature" hypothesis, the
informational content of temporal jitter could be parametrically increased
and compared with the informational content of a more classical surface
feature like colour. For example, an irregularly-presented sequence with
no relation to the task (e.g. fast-fast-fast-slow-slow-slow) would have an in-
formation content of zero, but an irregularly-presented sequence predictive
in the task (e.g. fast for A, slow for B, fast for C, slow for D) would have a
higher information content. These levels of information content could be
replicated with colour. If, at the same information level, temporal jitter af-
fects performance more than the equivalent colour cue, this describes the
degree to which temporal information is weighted as more than a surface
feature. This test would provide a quantitative and parametric measure of
the relative value of temporal jitter as a fundamental and uniquely impor-
tant property of how we learn, irrespective of information content.

4.4.3 Conclusions

In this section we asked whether changing temporal relationships would
change how subjects learn. Subjects were split into three groups and ex-
posed to different degrees of temporal jitter: some subjects viewed stimuli
that were regularly presented, and two other groups viewed stimuli that
were presented with temporal jitter to a lesser and greater degree. The re-
lationship between items in time is the most important element of most
statistical learning, and so it was expected that varying the stimulus pre-
sentation rate would cause subjects to change their strategies for learning.
Subjects were expected to perform more poorly when exposed to more tem-
poral jitter.

However, the opposite result occurred. Though many of these results
did not pass the p < .05 threshold, subjects systematically increased their
performance when exposed to temporal jitter. They learned faster and adopted
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more maximization strategies. One explanation for why this behaviour
emerged is the "hardness hypothesis"— subjects were overwhelmed by the
difficulty of the tasks with temporal jitter and so adapted the easier max-
imization strategy. Results might not have been strong because of small
sample sizes, high individual variability, or possibly information-content
concerns.

This pattern of results revealed that subjects did change their strategies
in response to temporal jitter, and if the "hardness hypothesis" holds true,
then they changed their strategies in a way consistent with the attentional
and cognitive load considerations in the literature. The unpredicted results,
however, are intriguing and suggest the need for further study. Why did
subjects adopt the maximizing strategy when faced with temporal jitter—
was it a conscious decision or unconscious? Could this effect occur with
any kind of cognitive load? Does this effect occur only on complex tasks?
Future study is necessary to determine exactly how the regularity of stimu-
lus presentation affects the strategies subjects use to learn.
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Chapter 5

Structural Contingencies

5.1 Introduction

In this section we probe most deeply into the question of which strategies
subjects use to learn. There are two modal strategies subjects use when re-
sponding to probabilities: maximization and matching. Both affect what
rewards one gains in life— some are more optimal in different situations—
so choice of strategy matters. Maximization is easier in most contexts: just
find the result that is most often correct, and learn that rule. Matching re-
quires learning an entire probability distribution. When do people choose
to use one strategy over another?

We addressed this question by constructing two experimental condi-
tions that were roughly equated in the effort required to maximize, but
very different in the effort required to match. We hypothesized that subjects
would approach the problem in a graded manner based on difficulty: many
subjects would maximize, because they found it easy. However, more sub-
jects would match in the easier matching condition compared to the harder
matching condition. Creating these conditions let us ask whether subjects
considered the "difficulty" of a strategy before using it, which would seem
a computationally rational idea to pursue.

Two experimental groups were compared. In both groups, the high-
probability sequence was the same. However, one group had an odd low-
probability loop structure (the same control group "Main" introduced pre-
viously), while the other group had a low-probability loop that was sim-
ply the reverse of the high-probability sequence (the "Different Contingen-
cies") group. In this paradigm, maximizing only requires learning the high-
probability loop. Matching requires learning the low-probability statistical
contingencies as well. Because the low-probability statistical contingencies
were more complicated in the Main group, it was expected that there would
be fewer matchers in the Main group.
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In this study, both strategies— maximization and matching— were com-
bined into a single continuous measure, ICD and ICD end. A matching
strategy resulted in lower strategy values, while a maximizing strategy re-
sulted in higher strategy values. We predicted that there would be similar
numbers of maximizers in each group, since this strategy was roughly the
same difficulty in both conditions. (The maximization strategy might have
been slightly harder to learn in the Main group, because the low-probability
statistical contingencies could sometimes restart the subject in a different
part of the loop than they were expecting. This unexpected switching did
not occur in the Different Contingencies condition, where subjects moved
backwards in the loop one step at a time if they were being towed by low-
probability contingencies.) We predicted there would be more matchers
in the Different Contingencies group due to the ease of learning the low-
probability statistical contingencies, and therefore that there might be a few
more maximizers in the Main group to even out the number of total max-
imizers and matchers across groups. Thus, subjects in the Main condition
were hypothesized to have higher ICD and ICD end values, because they
would have a slightly higher number of maximizers and fewer matchers
compared to the Different Contingencies condition. Subjects in the Main
condition were expected to have lower matching performance index values
for the same reason (fewer matchers).

Subjects in both groups were expected to have roughly the same learn-
ing rates and transition times since both matching and maximization strate-
gies increased these values at roughly the same rate. In transfer test results,
subjects in the Different Contingencies condition were expected to do much
better in the probability transfer test. In the probability transfer test, the
high-probability statistical contingencies become the low-probability statis-
tical contingencies and vice versa. It should have been much easier for the
Different Contingencies subjects to learn their new "high-probability" loop
(since this loop was almost exactly the same as their training loop, but re-
versed, see Figure 5.1(b)) compared to the Main subjects (who were trying
to learn oddly structured "A"→"C"→"B"→"A" / "D"→"D" statistical contin-
gencies, see Figure 5.1(a)). Subjects were hypothesized to perform roughly
equally in the symbol transfer and speed transfer tests, since these tests did
not unduly rely on differences in strategy.

5.2 Methods

Two experimental groups were compared: "Main" and "Different Contin-
gencies". These groups were roughly equated in difficulty for maximiz-
ers (they contained the same high-probability loop) but different in diffi-
culty for matchers (the "Main" group had more complex low-probability
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(A) Markov model design for Main, Jitter, Augmented Jit-
ter, Feedback, Maximization Feedback, and No Feedback

groups.

(B) Alternative Markov model design for Different Con-
tingencies group.

FIGURE 5.1: Markov model designs. Red arrows indicate
the most likely symbol to appear given the context (80%);
blue arrows indicate the less likely symbol (20%). P(c) refers
to marginal probabilities. "A", "B", "C", and "D" are replaced

by symbols (randomized by participant).
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TABLE 5.1: Structural Contingencies Experimental Groups
Summary. Abbreviations: "Cont." refers to "Different Con-

tingencies", "alt." refers to the alternate Markov model.

Groups: Main Cont.

Temporal Jitter (up to %) 0 0
Markov Model main alt.
Trial-By-Trial Feedback n/a n/a
Block Feedback yes yes

loops than the "Different Contingencies" group). The "Main" group and the
"Different Contingencies" groups differed in the first-order Markov models
used to generate the sequences (Figure 5.1). Both designs had block feed-
back (encouraging matching) and no jitter (Table 5.1).

Subjects were trained over four days, and on the last day did a testing
sequence (test block, random block, test block), the probability transfer test
(the high- and low-probability statistical contingencies were switched), the
symbol transfer test (symbols were replaced by a new set of symbols), and
the speed transfer test (items were presented more quickly).

5.3 Results

5.3.1 Learning Profile

Matching Performance Index

Subjects had similar learning profiles across the different structural contin-
gencies groups. Matching performance index patterns across training were
similar across groups (Figure 5.2). Mean test scores (pre- and post-) were
not significantly different across groups (mixed two-way ANOVA, Session
x Group, F(1,27) = .17, p = .68). There was not a main effect of Group (F(1,27)
= 1.29, p = .27). There was a significant main effect of Session, F(1,27) =
155.01, p < .001 (Figure 5.3), which indicated that subjects improved from
pre-training to post-training.

Learning Indices

Learning profiles appeared similar across groups (Figure 5.4). Mean learn-
ing rates were not significantly different across groups (independent sam-
ples 2-tailed t-test, t(27) = -.47, p = .64), so subjects did not learn faster in
different groups (Figure 5.5). Mean transition times were not significantly
different across groups (independent samples 2-tailed t-test, t(27) = .81, p =
.42), so subjects did not learn earlier in different groups (Figure 5.5).
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FIGURE 5.2: Behavioural performance. Matching perfor-
mance index for participants from the Main (n = 15, weak
learners: n = 3) and Different Contingencies (n = 14, weak
learners: n = 0) groups across training (solid circles), the
pre-training test (open circles) and the post-training test
(open circles). Higher scores on the matching performance
index indicates more matching behaviour. Participants
completed the task over five days. Data is fitted for partic-
ipants who improved during training (black circles). Data
is also shown for participants that did not improve during
training (grey circles). Random guess baseline is indicated
by a solid grey line across blocks. Error bars indicate stan-

dard error of the mean.
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FIGURE 5.3: Behavioural test performance. Matching per-
formance index for participants from the Main (n = 15) and
Different Contingencies (n = 14) groups for pre-training per-
formance and post-training performance. Higher scores on
the matching performance index indicates more matching

behaviour.

FIGURE 5.4: Learning curves. Mixture coefficient weights
for level-1 compared to level-0 model for participants from
Main (n = 15) and Different Contingencies (n = 14) groups.
The average curve is shown as a thicker line. Weights closer
to 1 indicate that the subject is more likely to be making pre-
dictions based on a Markov level-1 model; weights closer to
0 indicate that the subject is more likely to be making pre-

dictions based on a Markov level-0 model.
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FIGURE 5.5: Mean learning indices for participants from
Main (n = 15) and Different Contingencies (n = 14) groups.
Learning rate is the slope of the learning sigmoid curve;
transition time is the time point at which y-axis of the learn-
ing curves is equal to .5 (the weights for level-1 and level-0
Markov models are both equal to .5). Higher learning rates
indicate a faster rate of learning; lower transition time val-

ues indicate earlier learning.

Strategy

Strategy profiles appeared similar across groups (Figure 5.6). ICD scores
were not significantly different across groups (independent samples 2-tailed
t-test, t(27) = .64, p = .53) (Figure 5.7). ICD end scores were not significantly
different across groups (independent samples 2-tailed t-test, t(27) = .56, p =
.58) (Figure 5.7).

5.3.2 Transfer

Probability Transfer Test

In the probability transfer test the high- and low-probability statistical con-
tingencies were exchanged. Improvement from the pre-training test to the
untrained transfer test occurred (mixed two-way ANOVA, significant main
effect of Training, F(1,27) = 33.05, p < .001), showing generalisation occurred
from training to the probability transfer condition. Participants from the
Different Contingencies group performed significantly higher on the prob-
ability transfer test compared to participants from the Main group (signifi-
cant interaction effect of Training x Group, F(1,27) = 5.02, p = .03, and there
was a significant main effect of Group (F(1,27) = 5.76, p = .02) indicating a
significant difference between groups (Figure 5.8).
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FIGURE 5.6: Strategy choice. ∆ KL divergence between
model matching and model maximization strategies for
participants from the Main (n = 15) and Different Contin-
gencies (n = 14) groups. KL divergence is a measure of
how different the probability distributions that the subject
is using to make predictions are from the probability dis-
tributions of predictions made using a perfect maximiza-
tion strategy and a perfect matching strategy. The average
curve is shown as a thicker line. Exact matching (dashed
line) and maximization models (solid grey line) are plotted.
More negative KL scores indicate a strategy closer to maxi-

mization.

FIGURE 5.7: Mean strategy indices for participants from the
Main (n = 15) and Different Contingencies (n = 14) groups.
ICD and ICD end measure the signed area between the sub-
jects’ strategy curve and predictions made using a perfect
matching strategy. Higher ICD and ICD end values indi-
cate a strategy closer to maximization. ICD and ICD end

values equal to zero indicate a perfect matching strategy.
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(A) Main

(B) Different Contingencies

FIGURE 5.8: Transfer test performance for participants from
the Main (n = 15) and Different Contingencies (n = 14)
groups. Higher matching performance index values indi-

cate more transfer.
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Symbol Transfer Test

Improvement from the pre-training test to the untrained transfer test oc-
curred (mixed two-way ANOVA, significant main effect of Training, F(1,27)
= 68.57, p < .001), showing generalisation occurred from training to the
symbol transfer condition. There was not an interaction effect (Training
x Group, F(1,27) = .82, p = .37) nor a main effect of Group (F(1,27) = .00,
p = 1.00), indicating that performance did not significantly differ between
groups (Figure 5.8).

Speed Transfer Test

Improvement from the pre-training test to the untrained transfer test oc-
curred (mixed two-way ANOVA, significant main effect of Training, F(1,27)
= 6.60, p = .02), showing some generalisation occurred from training to the
speed transfer condition. There was not an interaction effect (Training x
Group, F(1,27) = .01, p = .93) nor a main effect of Group (F(1,27) = .29,
p = .60), indicating that performance did not significantly differ between
groups (Figure 5.8).

Direct Transfer Comparisons

This information is the same as presented in (Figure 5.8), but shows a direct
comparison of the transfer conditions between groups.

Mean performance in the probability transfer test was significantly dif-
ferent across groups (independent two-tailed t-test, t(27) = -2.63, p = .01);
specifically, scores for the Different Contingencies group were greater than
scores for the Main group (Figure 5.9(b)).

Mean performance in the symbol transfer test was not significantly dif-
ferent across groups (independent two-tailed t-test, t(27) = .417, p = .68)
(Figure 5.9(c)).

The speed transfer test did not show an interaction effect between Ses-
sion x Group (mixed two-way ANOVA, F(1, 27) = .28, p = .60) nor a main ef-
fect of Group (F(1,27) = .03, p = .87), indicating that there were no significant
differences between groups. However, there was a main effect of Session
(F(1,27) = 17.98, p < .001) indicating some improvement on the transfer task
from pre-training transfer test to post-training transfer test (Figure 5.9(d)).

5.4 Discussion

In this section, we asked whether people chose which learning strategies
they employed based on the ease of execution. We specifically investi-
gated two learning strategies, maximization and matching. To address this
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(A) Pre-training and post-training performance for comparison

(B) Probability Transfer

(C) Symbol Transfer

(D) Speed Transfer

FIGURE 5.9: Behavioural test and transfer test performance
for participants from the Main (n = 15) and Different Con-
tingencies (n = 14) groups. Higher matching performance

index values indicate more transfer.
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question, we compared two conditions that were roughly equated for max-
imizers but were of different difficulties for matchers. We hypothesized
that in the condition where it was easier to match, more subjects would
match, while the number of maximizers would be roughly similar across
groups. This hypothesis led to the following set of predictions: the group
where it was difficult to match ("Main" group) would have higher ICD and
ICD end values, since they would have relatively fewer matchers (match-
ers have lower strategy indices than maximizers). Matching performance
index scores were expected to be higher in the "Different Contingencies"
group, since this group was expected to have more matchers. The Main
group were expected to have roughly the same learning rate and transi-
tion time values as the Different Contingencies group since these values
are similar across matchers and maximizers. Probability transfer scores
from the Different Contingencies were expected to be higher because the
low-probability statistical contingencies were simpler, because the transfer
statistical contingencies were more similar to the training statistical con-
tingencies in the Different Contingencies group, and because if there were
more matchers some of them might have been making use of their low-
probability knowledge from training. Scores on the other transfer tests were
expected to be similar.

ICD and ICD end values and matching performance index scores were
in the directions expected, but were not significantly different across groups.
Learning rate and transition times were not significantly different across
groups as expected. Probability, symbol, and speed transfer test perfor-
mance was improved from pre-training test performance, demonstrating
generalisation. As expected, participants from the Different Contingencies
group performed significantly higher on the probability transfer test com-
pared to participants from the Main group.

5.4.1 Matchers and maximizers

We asked the question of whether subjects choose their strategies based on
the ease of execution. On the one hand, the results were in the expected
directions, suggesting there may be merit to this theory. Adding support to
this idea is the qualitative blurriness in defining "matchers" and "maximiz-
ers" in the strategy plots (Figure 5.6): subjects are seldom one or the other,
but usually a combination of both. This is a function of the continuous
nature of the ICD and ICD end measures, and shows that subjects rarely
switch cleanly from being maximizers or matchers, but transition from one
to the other as would be expected by a "ease of applicability" rationale.
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On the other hand, the results were not close to significance: the differ-
ences between experimental groups was very small for the relevant mea-
sures (matching performance index and strategy indices). This could sug-
gest that the choice of strategy, maximization or matching, is not a graded
choice but absolute. Subjects will choose a strategy and do their best to stick
with it. This would not be an unreasonable strategy if subjects were prone
to being matchers or maximizers beforehand and were not aware of the
difficulty of the low-probability statistical contingencies before they began.
An immediate follow-up question to this conclusion is if subjects switch
their strategies throughout their training, as they become more aware of
contingencies. As discussed in Chapter 3, this information is captured in
the strategy plots but is not captured in the summary statistics.

However, even in the strategy plots the value of ICD and ICD end do
not fully capture the relationship between matching and maximization, be-
cause of the foreshortening of the area above the matching curve and the
elongation of the area below the matching curve. This stretching makes it
difficult to capture and quantify how these strategies interact. Moreover,
the model used in this study cannot capture strategies that are not prop-
erly executed— if a subject is attempting a matching strategy but has only
learned the probabilities within two contexts (e.g. the symbols that follow
after "A" and "C") but has failed to grasp the probabilities for the remain-
ing contexts (e.g. "B" and "D"), the subject’s strategy choice line will appear
more like that of a weak learner than a matcher. Future studies should
develop measures that more completely capture the relationship between
matchers, maximizers, and attempted matchers and maximizers, as well as
capturing what it is about specific trials and sequences that may spark a
subject’s change in strategy.

5.4.2 Probability transfer test

One of the most interesting conditions in this set of experiments was the
probability transfer test. Subjects in the Different Contingencies group were
expected to outperform subjects from the Main group, which was what oc-
curred. However, there were several different reasons why they were ex-
pected to perform well which are difficult to tease apart. First, the normal
low-probability statistical contingencies from the Different Contingencies
condition were intuitively easier to learn than those from the Main condi-
tion, so if subjects had learned nothing in training they should have per-
formed better in the Different Contingencies probability transfer test. Sec-
ond, the transfer probabilities from the Different Contingencies group were
more similar to the original high-probability statistical contingencies that



72 Chapter 5. Structural Contingencies

subjects were trained on in their respective groups, so if training was a fac-
tor, Different Contingency subjects would still be predicted to do better. Fi-
nally, matchers have to learn both high- and low-probability relationships,
and it is possible that matchers consciously reverse those contingencies at
test. Subjects who had learned the low-probability contingencies would be
at an advantage over subjects who had just learned the high-probability
contingencies, because the low-probability contingencies suddenly come to
drive the sequence in the probability transfer task (when they switch to
become the high-probability contingencies). If more subjects were in the
Different Contingencies group were matchers, this could result in better
performance in the probability transfer test. On the other hand, maximiz-
ers could also have this knowledge— as was argued in Chapter 3, subject
responses can only capture how subjects act, not what they know.

All of these possible sources describing why subjects from the Differ-
ent Contingencies group outperformed the Main group on this transfer test
were confounded in this study. Future studies should develop tests that
isolate these components. For example, to determine if training is irrele-
vant and it is only the difficulty of the transfer test that matters, subjects
from both groups (Main and Different Contingencies) should be tested on
the same transfer test and should perform equivalently. To determine if
it is only the similarity of the training and transfer statistical probabilities
that matters, subjects in both groups should be trained on the Main transfer
test statistical probabilities, and tested on their current transfer tests with
different symbols: subjects in Main condition should outperform the Dif-
ferent Contingencies subjects since the oddly-configured loop will be more
familiar than the more straightforward loop. It is harder to design a test
to determine if matchers use their low-probability knowledge to perform
the probability transfer test. One interesting analysis would be to compare
performance from matchers and maximizers within the same group, being
careful to ensure that matchers and maximizers can be sorted out neatly
and not be either confused with each other or combined with subjects who
have a poorer grasp of some of the statistical contingencies. This analysis,
however, only works assuming that maximizers have no low-probability
knowledge, so a better test might be to first test subjects’ knowledge of the
low-probability contingencies and then separately examine their probabil-
ity transfer test generalisation results.

5.4.3 Conclusions

In this section we asked how subjects used two important strategies for
learning: matching and maximization. Specifically, we hypothesized that
subjects would differentially employ these strategies depending on ease of
use. To test this, we compared two experiments of similar difficulty for
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maximizers but of different difficulty for matchers. We expected that in the
group where matching was easier more subjects would be matchers. We ob-
served trends in this direction but far from significant differences between
groups. This suggests the need for further work exploring which factors do
govern how these two strategies are employed, as ease of application does
not necessarily seem to be the metric that subjects use.

Future work could include probing whether subjects have strong ten-
dencies toward maximization or matching before the experiment begins
and how flexible subjects are at changing their strategies. Moreover, stronger
strategy measures should be developed that allow better characterisation of
how maximization and matching interact within hybrid strategies, and also
how to model strategies from subjects with incomplete knowledge. Addi-
tionally, the finding that subjects from the Different Contingencies group
were able to outperform the Main group on the probability transfer test
gives rise to many more follow-up studies investigating about how subjects
learn and why this result should occur.

Comparison of these experimental groups revealed that how subjects
choose strategies is not as simple as choosing the strategy that is easiest,
which perhaps could have been predicted based on the fact that not all sub-
jects are maximizers. The fact that not all subjects are maximizers also sug-
gests that subjects do not choose strategies based on accuracy-based opti-
mality. Further investigation into the details of maximization and matching
will continue to seek the factors that drive how subjects choose to learn and
act.
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Chapter 6

General Discussion

Statistical learning, the ability to learn the statistical relationships between
items and events, is one of our most powerful mechanisms for navigating a
complicated world. From learning language to predicting what comes next,
this is an essential ability spanning modalities and domains. We sought to
investigate how subjects direct their statistical learning based on situational
demands: whether subjects would engage different strategies based on the
task structure. To investigate this question we introduced three manipula-
tions.

We first exposed participants to feedback, expecting that the acknowl-
edgement of monitoring coupled with the explicit introduction of desired
outcomes would induce subjects to change their strategies. Subjects did in-
deed change their strategies, maximizing more when feedback that encour-
aged maximization (both accuracy-based and maximization-based) was ap-
plied. Interestingly, subjects receiving intermittent feedback encouraging
matching did not seem to maximize or match more than subjects not re-
ceiving any feedback, a result that encourages future study about the role
of directed feedback.

We then introduced disruptions in the fundamental property of tempo-
ral relations. We expected subjects to perform more poorly and develop
poorly-performing strategies; but instead, subjects in the groups with the
most jitter adopted maximization strategies, perhaps due to a "hardness
hypothesis" in which subjects became overwhelmed by difficult stimuli and
chose to optimize their strategy from the beginning.

Finally, we introduced a sequence task with a new structure, to deter-
mine if subjects would change their strategies when the relative ease of cer-
tain strategies was different between groups. Subjects did not change their
strategies in this case but did have superior performance on a transfer test,
showing that they understood the ease of the low-probability contingen-
cies but did not apply this knowledge to their strategy use. This result is
curious, as subjects do not appear to base their strategy choices on ease
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of use or accuracy-based optimality (otherwise everyone would be a max-
imizer), which raises further questions into the factors that drive peoples’
approaches to learning and prediction.

We examined the strategies that subjects used to direct their statistical
learning, but what learning occurred in the first place? In the following
sections, we examine what rules and content subjects were acquiring such
that their specific strategies emerged.

6.1 Abstraction: Symbol Transfer Test

When people learn a complex sequence like the one in this study, to what
degree of abstraction do they acquire rules? In fact, subjects across all
groups significantly improved from the pre-training test to the symbol trans-
fer test (3.7, 4.7, 5.8). This demonstrates that no matter what the task de-
manded, subjects in this task learned rules that generalised over the surface
feature of shape.

This finding of abstraction over shape is not unprecedented; in visual
statistical learning studies, Turk-Browne, Jungé, and Scholl (2005) showed
that subjects could classify triplets of symbols and generalise over a surface
feature like colour, while Turk-Browne, Isola, et al. (2008) observed that
subjects could classify triplets based on colour and generalise over shape.
Subjects can transfer to new letter sets in artificial grammar learning and ar-
tificial language learning paradigms, showing abstraction over shape (e.g.
Reber (1967), Marcus, Vijayan, et al. (1999), and Gerken (2010)).

However, the finding of generalisation observed in this study was also
not guaranteed. The current study can be compared with Gómez (1997),
one of the few studies that uses a similar transfer test. In one of their
experiments, Gómez (1997) used a sequential artificial grammar learning
paradigm in which the untrained letters appeared on the screen one at a
time in the transfer test. This transfer test is analogous to the symbol trans-
fer test used in this study. Gómez (1997) also had an experiment using the
standard artificial grammar learning paradigm in which strings contain-
ing untrained letters were presented simultaneously on the screen in the
transfer test. Interestingly, subjects could transfer their knowledge in the
standard artificial grammar learning transfer test but not in the sequential
test. The fact that generalisation over shape was not observed in Gómez
(1997) is particularly salient given the task complexity of a sequential ar-
tificial grammar transfer test is similar to that of the current study. It is
possible that subjects in the Gómez (1997) study may have been able to
transfer their knowledge with extensive training, as our subjects under-
went multiple training sessions with sleep consolidation. In the current
study, the success of transfer in the symbols transfer test across all sets of
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experimental groups is strong support that subjects’ statistical learning was
abstract over the feature of shape. Future studies should investigate which
surface features will be persistently generalised over across paradigms, and
what components of different statistical learning tasks drive the specificity
of learning.

6.2 Knowledge vs. Decision-Making

This question of what information subjects have acquired is distinct from
what information subjects choose to behaviourally demonstrate. One of
the drawbacks of this study is that while matchers show their learning
of both low- and high-probability statistical contingencies, maximizers by
definition of their strategy choice only demonstrate their high-probability
knowledge. Future studies must employ precise response measures that
are calibrated to target specific questions; these probes need not be explicit,
but they must test that subjects can predict items using low-probability dis-
tributions as well as high-probability distributions. From another angle,
something that would have helped in linking decision-making strategies
with learning would have been to analyse the results from the transfer tests
for matchers and maximizers separately. Unfortunately, another critique
of this study is that the border between matchers and maximizers is con-
tinuous and condensed, which makes it difficult to separate matchers and
maximizers. However in the future when the separation would be more
clear-cut, we could observe whether matchers and maximizers have differ-
ent abilities to generalise their knowledge, which would be an indication of
what information they had learned during training. Future work will re-
quire carefully designed questions and models of the information subjects
are representing. We are always limited by our input analysis measure—
behaviour— but careful controls can reduce the gap between subjects’ re-
sponses and our hypotheses of what subjects are representing.

6.3 Future Studies

The question of what strategies people use to solve probabilistic problems
is an interesting one. From the results of this study, several follow-up ques-
tions arise that would help reveal the role of these strategies. First, do peo-
ple match before they maximize (as would be supported by the idea that
matchers learn more information that maximizers)? Do subjects switch be-
tween maximization and matching strategies, or do they adopt characteris-
tics of both? Do subjects pursue one strategy for a given amount of time be-
fore they switch, or is a switch externally driven? Which specific sequences
may bias a subject towards one strategy or another? Turning the question
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on its head: does the decision to adopt a strategy influence what informa-
tion a subject acquires, or does information-acquisition drive the strategy?

There are also a number of questions one could ask with regards to in-
dividual differences in adopting strategies. Are some strategies followed
first? Are some people born matchers? Do behavioural characteristics pre-
dict which strategies a subject uses regardless of task demands? Correla-
tion studies with behavioural characteristics like IQ or mathematical train-
ing would be useful in addressing this last question. Another approach
would be to correlate which strategies subjects used in this task to what
strategies subjects would use on a binary prediction task (e.g. the marbles
task), a simpler task where maximizing and matching strategies are also
employed. Additionally, it would be interesting to compare subject perfor-
mance on multiple statistical learning tasks to see if certain characteristics
across tasks might predict performance on this one.

This paradigm offers intriguing insights into strategy use in a complex
paradigm mimicking how subjects engage statistical learning in real life.
Long-term, strategic decision-making is an important component in under-
standing how people interact with a probabilistic world, but the literature
in statistical learning often does not operate within this framework, and
the literature in maximizing and matching often uses simple binary predic-
tion paradigms. This study integrates both domains and raises interesting
questions but has methodological limitations; future studies should con-
tinue to study the interaction between these mediums. These studies could
continue to investigate task demands like the ones implemented in this
study (feedback, temporal jitter, structural contingencies) but also others
used in statistical learning paradigms (e.g. colour, interleaved sequences,
occasional deterministic sequences). Pursuing these questions would help
describe which particular components of this paradigm drove the unpre-
dicted results by drawing comparisons between statistical learning experi-
ments.

6.4 Conclusions

This study investigated the strategies involved in statistical learning. Specif-
ically, we probed whether subjects changed how they made their predictions—
using a maximization or matching strategy— depending on the task struc-
ture. We observed that subjects often did change their strategies (sometimes
in unpredicted directions) and many follow-up questions can be raised.
Future experiments can provide further detail into what features motivate
subjects to choose strategies in probabilistic settings, addressing the deeper
question of how people effectively harness their ability to learn complex,
statistical information.
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Appendix A

Individual Differences
Analyses

In this study we were interested in what strategies subjects adopted, and
an important factor in strategy choice could be individual differences. We
thus analysed relationships among individual subjects’ strategy scores and
performance scores, learning rates and independent cognitive test results
to discover if there were factors that could predict strategy at an individual
level as opposed to a group level.

A.1 Learning Profile and Strategy Profile Correlations

In previous work (Wang et al., in review), learning rate and strategy indices
were positively correlated, indicating that subjects who learned quickly
tended to use strategies closer to maximization. Specifically, learning rates
(higher values indicate faster learners) and ICD / ICD end (strategy indices,
higher values indicate more maximization behaviour) were correlated. This
relationship between learning rate and ICD / ICD end was maintained in
the current set of experimental groups (ICD vs. LR, r(98) = .51, p = 4.7e-8;
ICD end vs. LR, r(98) = .47, p = 9.4e-7, Figure A.1). However, it is inter-
esting to note that some of this correlation appears to be driven by sub-
jects with very low learning rates and negative ICD and ICD end scores—
these are subjects who did not fully learn the task and did not adopt either
a maximization or matching strategy. Therefore, one should be cautious
about making conclusions concerning whether it is the maximization strat-
egy specifically that correlates with learning rate as opposed to maximiza-
tion and matching strategies that are correlated with fast learning.

Similarly, performance on the post-training test (measured in matching
performance index) correlated positively with learning rate and strategy in-
dices: Post-training test vs. LR: r(98) = .35, p = .00042; Post-training test vs.
ICD: r(98) = .52, p < 3.2e-8; Post-training test vs. ICD end: r(98) = .56, p =
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FIGURE A.1: Correlations between learning rate and strat-
egy indices. Data from 100 participants was pooled across
experimental groups: Main (n = 15), Different Contingen-
cies (n = 14), Jitter (n = 14), Augmented Jitter (n = 15), Feed-
back (n = 17), Maximization Feedback (n = 14), and No
Feedback (n = 11). Learning rate is the slope of the learning
sigmoid curve; higher learning rates indicate faster learn-
ing. ICD (integral curve difference) and ICD end measure
the signed area between the subjects’ strategy curve and
predictions made using a perfect matching strategy. Higher
ICD and ICD end values indicate a strategy closer to maxi-
mization. ICD and ICD end values equal to zero indicate a

perfect matching strategy.
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FIGURE A.2: Post-training test performance, measured in
matching performance index, correlations with learning
rate and strategy indices. Data from 100 participants was
pooled across experiments: Main (n = 15), Different Con-
tingencies (n = 14), Jitter (n = 14), Augmented Jitter (n =
15), Feedback (n = 17), Maximization Feedback (n = 14),
and No Feedback (n = 11). No weak learners were in-
cluded as usual; data suggest groupings within included
subjects. Post-training scores are matching performance
index, where higher values indicates more matching be-
haviour. Learning rate is the slope of the learning sigmoid
curve; higher learning rates indicate faster learning. ICD
(integral curve difference) and ICD end measure the signed
area between the subjects’ strategy curve and predictions
made using a perfect matching strategy. Higher ICD and
ICD end values indicate a strategy closer to maximization.
ICD and ICD end values equal to zero indicate a perfect

matching strategy.
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2.2e-9 (Figure A.2). Here, learning rate and strategy indices correlate with a
measure of matching behaviour, further enforcing the idea that adoption of
either a maximizing or matching strategy correlates with fast learning. Fur-
ther, the correlations again appear to be driven by a smaller subset of sub-
jects with low post-training scores, low learning rates, and low ICD / ICD
end scores. When subjects are not performing the task effectively, indicated
by low post-training scores and low learning rates, the model has difficulty
capturing whether subjects are following a strategy closer to matching or
maximization (where lack of modellable strategy is indicated by very low
ICD and ICD end scores). Future studies might try to better capture sub-
jects’ behaviour when they are not using either a maximizing or matching
strategy effectively, but may well still be using a strategy closer to one or
the other.

A.2 Long-Term Learning Maintenance

Would the strategies that subjects employed be maintained beyond the short
period of the learning study? Participants in statistical learning studies are
rarely recalled to see if their learning is maintained in the long term. When
subjects are recalled, results after 24 hours are considered a long-term effect
(Kim et al., 2009). However, the current study was an intensive five-day
paradigm, therefore learning was expected to be maintained over a longer
period. Like in Baker et al. (2014), subjects were recalled after more than a
month on average to determine if statistical learning had been maintained.

Strategy use was not directly examined, but performance on the post-
training test measured in matching performance index was analysed. If
matching performance index scores were maintained across subjects over
time, this would be an indication that subjects maintained their match-
ing and maximization strategies beyond the learning period. In fact, per-
formance on the post-training test was maintained over time. 33 partici-
pants from the Main (n = 11), Different Contingencies (n = 9), Jitter (n = 8),
and Augmented Jitter (n = 5) experimental groups completed another post-
training test (mean time elapsed since previous post-training test: 50.3±6.0

days). Means (post- vs. recalled post-training test) were not significantly
different across Session (paired-samples t-test, t(32) = 1.61, p = .12). Mean
performance on post-training test = .79±.02; performance on recalled post-
training test = .78±.02.

Moreover, we asked whether strategy (as measured indirectly through
performance matching index) would be maintained over time on the trans-
fer test that most subjects successfully completed: the symbol transfer test.
Maintenance of scores on the symbol transfer test would indicate that sub-
jects continued to use the same matching and maximization strategies for
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Cognitive Tests ICD ICD end

VSTM -.01 (.91) -.0028 (.98)
UFOV -.28 (.0049) -.20 (.048)
Episodic .28 (.055) .29 (.050)
ProbRev (persev) -.0041 (.98) -.0060 (.97)
ProbRev (pswitch) .14 (.35) -.16 (.29)

TABLE A.1: Correlations for cognitive tests and strategy in-
dices. Data was pooled across experimental groups. For
the Visual Short-Term Memory ("VSTM") task and Useful
Field of View ("UFOV") task, data was pooled across 100
participants: Main (n = 15), Feedback (n = 17), Maximiza-
tion Feedback (n = 14), and No Feedback (n = 11), Jitter
(n = 14), Augmented Jitter (n = 15), Different Contingen-
cies (n = 14). For the Episodic Memory ("Episodic") and
Probabilistic Reversal ("ProbRev") tasks, data was pooled
across 46 participants: Main (n = 12), Maximization Feed-
back (n = 2), Jitter (n = 8), Augmented Jitter (n = 15), Dif-
ferent Contingencies (n = 9). R-values for correlations are
included with p-values in parentheses. ICD (integral curve
difference) and ICD end measure the signed area between
the subjects’ strategy curve and predictions made using a
perfect matching strategy. Higher ICD and ICD end val-
ues indicate a strategy closer to maximization. ICD and
ICD end values equal to zero indicate a perfect matching
strategy. Higher VSTM scores indicate better short-term
memory, lower UFOV scores indicate better selective atten-
tion, higher episodic memory scores indicate better episodic
memory, and lower probabilistic reversal scores indicate
better performance. Specifically, lower perseverance scores
("persev") indicates subjects switched rules quickly when
appropriate (switched rules when task structure changed),
and lower probability switch scores ("pswitch") indicate
that subjects persisted in pursuing rules when appropriate

(persisted despite intermittent negative feedback).

transfer over time. The result was that performance on the symbol trans-
fer test (measured in matching performance index) was maintained over
time for the small set of subjects who were retested on the transfer test.
Participants in the Augmented Jitter (n = 5) group completed another post-
training test (mean time elapsed since previous post-symbol test: 57.0±5.7

days). Means (post- vs. recalled post-training symbol test) were not signif-
icantly different across Session (paired-samples t-test, t(4) = -.68, p = .54).
Mean performance on symbol transfer test = .79±.02; performance on re-
called symbol transfer test = .81±.01.
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A.3 Cognitive Test Correlations

We sought in this experiment to understand why subjects used maximiza-
tion or matching strategies. Analysing correlations between strategy use
and independent cognitive tests provides insight into the factors that gov-
ern strategy choice. We compared the results from subjects’ strategy mea-
sures with four cognitive tests: Visual Short-Term Memory (VSTM), Useful
Field of View (UFOV), Episodic Memory, and Probabilistic Reversal.

A.3.1 Methods

Two strategy indices, integral curve difference (ICD) and ICD end (ICD cal-
culated over the last two blocks of training rather than across all training
blocks) were used.

Four cognitive tests were used: a VSTM task to probe short-term mem-
ory, a UFOV task to probe selective attention, an episodic memory task,
and a probabilistic reversal task. (Note that the RSVP task was reserved
for screening due to ceiling effects.) The VSTM and UFOV tasks were de-
scribed in Chapter 2; in the VSTM task, subjects saw a number of coloured
dots and had to recall the colours at test, while in the UFOV task subjects
saw a target image in the center of their vision and another at their periph-
ery, and at test had to recall the identity of the target image at the center
and the location of the image at the periphery. The episodic memory and
probabilistic reversal tasks are described below.

Strategy indices were correlated with performance on all four cognitive
tests.

Episodic Memory Task

A treasure-hunt task was used to test episodic memory (Cheke, Simons,
and Clayton, 2016). Participants were presented with scenes and instructed
to move and "hide" several food item images using the landmarks in each
scene. In each trial, two different scenes were used; four items were pre-
sented within each scene. Each item was presented twice within a given
scene across two consecutive hiding periods named "day 1" and "day 2".
Participants were instructed to not hide any two items in the same place
across days. In a recall period, subjects were required to indicate where
they had hidden each item in each scene during each of the "days". The
number of items whose positions for each day were successfully retrieved
was recorded. Participants completed a training session with feedback be-
fore completing two test trials without feedback. 46 participants completed
the Episodic Memory tasks.
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Probabilistic Reversal Task

The probabilistic reversal task was used to assess cognitive flexibility (Mur-
phy et al., 2003). Participants were presented with two images of stripes—
one blue, one yellow— in each trial. Subjects clicked one of the coloured im-
ages with a mouse and were given trial-by-trial feedback (correct/incorrect)
to encourage them to continue choosing the image of specified colour. Feed-
back was misleading 25% of the time. Reversal of the stimulus-reward con-
tingency took place after 40 trials (the colour that was previously "incor-
rect" became "correct" and vice-versa). Subjects were instructed to "choose
the image that is most often correct and this rule may change." Two mea-
sures of cognitive flexibility were recorded: "perseverance" marked how
many trials the subject continued choosing the colour that had been cor-
rect before the contingency-reversal after the reversal (and accompanying
feedback changes) occurred, and "probability of switching" described the
number of times the subject chose the incorrect colour immediately in re-
sponse to negative feedback (when they should have adhered strictly to a
colour rule). 46 participants completed the probabilistic reversal task.

A.3.2 Predictions

All cognitive tests— VSTM, UFOV, episodic memory, and probabilistic re-
versal (measures: perseverance and probability of switching)— were corre-
lated with strategy measures (ICD and ICD end).

It was predicted that high performance on the memory and attention
tasks would be correlated with higher ICD and ICD end scores, indicat-
ing that increased memory and attentional abilities would facilitate sub-
jects adopting maximization and matching strategies. It was hypothesized
that memory would have a stronger impact on strategy choice (matchers in
particular need to have a large memory capacity to recall probability distri-
butions) than attention, so the correlations between ICD and ICD end and
the memory tests would be stronger than the correlations between ICD and
ICD end and the attention task.

Specifically, ICD (integral curve difference) and ICD end measure the
signed area between the subjects’ strategy curve and predictions made us-
ing a perfect matching strategy. Higher ICD and ICD end values indicate
a strategy closer to maximization. ICD and ICD end values equal to zero
indicate a perfect matching strategy. The memory tasks were VSTM and
episodic memory. Higher VSTM scores indicate better short-term mem-
ory and higher episodic memory scores indicate better episodic memory.
Therefore ICD / ICD end and VSTM were expected to be positively corre-
lated and ICD / ICD end and episodic memory were expected to be posi-
tively corrected. The attention task was UFOV. Lower UFOV scores indicate
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better selective attention. Thus, ICD / ICD end and UFOV scores were ex-
pected to be negatively correlated, but to a lesser degree than the memory
tasks.

For the probabilistic reversal task, it was predicted that higher perfor-
mance would correlate with more maximization and matching strategies.
Lower probabilistic reversal scores indicate better performance. Specifi-
cally, lower perseverance scores indicate that subjects switch rules quickly
when appropriate (change strategies when faced with changing structure),
and lower probability switch scores indicate that subjects persist in pur-
suing given rules when appropriate (maintain strategies in the face of in-
termittent negative feedback). If subjects tend to change rules to match
the task structure they observe (loosely what the perseverance score mea-
sures for the probabilistic reversal task), they should adopt maximization
and matching strategies appropriately, resulting in high ICD and ICD end
scores. Thus, perseverance scores and ICD / ICD end should be nega-
tively correlated. Also, if subjects persist in pursuing rules despite inter-
mittent negative feedback (loosely what the probability switch score mea-
sures for the probabilistic reversal task), subjects should correctly persist
in their matching and maximization strategies even when they occasion-
ally fail to predict the next symbol correctly. This indicates that probability
switch scores and ICD / ICD end scores should be negatively correlated.

If the predicted correlations for all cognitive tests are strong, this would
be an indication that strategy choice is as much a measure of individual dif-
ferences as group-level manipulations. Strategy choice could be predicted
on the basis of independent cognitive abilities.

A.3.3 Results and Discussion

Two scores correlated with p-values close to .05: UFOV scores and episodic
memory scores. UFOV scores were negatively correlated with ICD and ICD
end (Table A.1). Lower UFOV scores indicate better performance, so this
correlation was in the direction expected: subjects with strong selective at-
tention abilities tended to be maximizers and matchers. UFOV is an at-
tentional task, so attention thus played a more important role in strategy
choice than predicted. Episodic memory scores were positively correlated
with ICD and ICD end. Higher episodic memory scores indicate higher
performance, so this correlation was also in the direction expected: subjects
with strong episodic memory abilities tended to be maximizers and match-
ers. If maximizers and matchers could be neatly separated in this paradigm,
it would have been interesting to analyse the correlation between ICD and
ICD end and episodic memory scores for maximizers and matchers inde-
pendently since higher episodic memory ability might have been expected
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for the matchers (who had to memorize entire probability distributions; this
might be the case for maximizers as well but was necessary for matchers).

It is intriguing that scores from the VSTM task, which is also a memory
task, did not correlate with ICD and ICD end. It speaks to an interesting
difference between episodic memory and short-term memory. In the se-
quential learning task, one would expect both abilities were important—
the ability to recall specific episodes of sequences and also the ability to re-
call the previously-presented symbol. The finding that episodic memory
scores correlate with strategy but VSTM scores do not may suggest that re-
membering past episodes of symbols— whatever length of time that entails
in the sequential learning task— may be more predictive than the ability to
remember the just previous symbol, which is essential but perhaps not as
rare an ability. This finding is difficult to interpret, however, because analo-
gies between episodic memory as defined in the episodic memory task and
episodic memory as defined in the sequential learning task are tentative; the
same is true for short-term attention analogies. One might have predicted
that all cognitive tests would correlate with ICD and ICD end, implicating
an underlying variable driving high performance in general like IQ. How-
ever, the lack of correlation with VSTM scores proposes this not the case,
suggesting that there is merit in analysing individual cognitive abilities for
correlations with strategy use.

Finally, it was unexpected that probabilistic reversal task scores did not
correlate with strategy indices. This task has previously revealed behavioural
differences between depressed patients and controls in Murphy et al. (2003),
so it was expected that differences would be observed here. However, there
were no patient groups in this study, so perhaps lack of sensitivity to the
proposed cognitive abilities due to low individual variability could have
led to the lack of correlations. Future studies should continue to investigate
the link between the probabilistic reversal task and strategy use, because
conceptually the abilities investigated in the probabilistic reversal task—
tendencies to switch strategy with regards to task structure, and tendencies
to persist in response to negative feedback— seem incredibly relevant to
strategy decisions. Additional cognitive tasks should be developed aimed
at isolating these abilities just in case they cannot be captured in non-clinical
subjects participating in the probabilistic reversal task used here.

The independent cognitive tests produced an interesting set of results
suggesting that individual capabilities in specific tasks may be able to pre-
dict strategy use. Future work should continue investigating which abili-
ties may be predictive of strategy behaviour, perhaps controlling for a vari-
able like IQ as well. Future work should also consider the relative impact
of individual variables compared to group-level manipulations— in this
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study, subject numbers were often too small to find correlations when sub-
jects were divided into experimental groups, but this interaction would be
intriguing in seeking to understand how flexible subject strategies are to
large-scale interventions like the ones proposed in the current study.
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Appendix B

Supplementary Methods

The following section contains the supplementary methods from a previ-
ous study submitted for publication in Wang et al. (in review). The original
submission has been lightly edited to reflect the methods used in the cur-
rent study.

Sequence design

To generate probabilistic sequences with different complexity levels, we
used a temporal Markov model and systematically varied the memory length
(i.e. context length) of the sequence. The model consists of a series of
symbols, where the symbol at time i is determined probabilistically by the
previous k symbols (context). We refer to the symbol presented at time i,
s(i), as the target and to the preceding k-tuple of symbols

(
s(i − 1), s(i −

2), ..., s(i− k)
)

as the context. The value of k is the order, or level, of the se-
quence: P

(
s(i)|s(i− 1), s(i− 2), ..., s(1)

)
= P

(
s(i)|s(i− 1), s(i− 2), ..., s(i−

k)
)
, k < i.

• The simplest k = 0th order model is a random memory-less source.
At each time step i, this generates a symbol according to symbol prob-
ability P (s), without taking the context (i.e. previously generated
symbols) into account.

• The k = 1 model generates symbol s(i) at each time i conditional on
the previous symbol s(i − 1). This introduces a memory in the se-
quence, i.e., the probability of a particular symbol at time i strongly
depends on the preceding symbol s(i − 1). Unconditional symbol
probabilities P

(
s(i)

)
for the case k = 0 are now replaced with condi-

tional ones, P
(
s(i)|s(i− 1)

)
.

At each time point, the symbol that follows a given context is deter-
mined probabilistically, thus generating stochastic Markov sequences. The
underlying Markov model can be represented through the context-conditional
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target probabilities. We used 4 symbols that we refer to as items A, B, C and
D. The correspondence between items and symbols was counterbalanced
across participants. For level-0 sequences (random sequences) each symbol
had an equal probability of occurrence. For 1st-order sequences, the target
depended on the preceding item. Given a context (the last seen symbol)
only one of two targets could follow; one had a high probability and the
other low probability (e.g., 80% vs. 20%). For example, when Symbol A
was presented, only symbols B or C were allowed to follow, and B had a
higher probability of occurrence than C.

All sequences were pre-generated. To ensure that sequences in each
block were representative of the Markov model per sequence type (train-
ing, test, random (presented within the test segments of test block / ran-
dom block / test block), probability transfer, symbol transfer, and speed
transfer), we generated 200 Markov sequences per sequence type compris-
ing 672 items per sequence. We then estimated the Kullback- Leibler diver-
gence (KL divergence)

KL =
∑
c

Q(c) log
Q(c)

P (c)

for each presented sequence P (c) compared to the ideal Markov modelQ(c)

across the probabilities of all the conditions c (individual targets at level-0
or context-target contingencies at level-1) and selected the number of blocks
plus one sequences with the lowest KL divergence (i.e. these sequences
matched closely the Markov model per sequence type and level). This pro-
cess was repeated for each session. The sequences presented to the partici-
pants during the experiments were selected randomly from these sequence
sets. (Note: when calculating KL-divergences, we replaced zero/negligible
probabilities with a small value 0.001 and then renormalized.)

Data analysis

Matching performance index: We assessed participant responses in a prob-
abilistic manner. For each context, we computed the absolute distance be-
tween the distribution of participant responses Presp(s|context) and the dis-
tribution of presented targets Ppres(s|context) estimated across 60 trials per
block:

AD(context) =
∑
t

|Presp(st|contextt)− Ppres(st|contextt)|,

where t is trial index and the target s is from the symbol set A, B, C and D.
We quantified the overlap between these two distributions by computing a
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matching performance index per context:

PI(context) =
∑
t

min
(
Presp(st|contextt), Ppres(st|contextt)

)
.

Note that PI(context) = 1 − AD(context)/2. The overall matching perfor-
mance index is then computed as the average of the matching performance
indices across contexts, PI(context), weighted by the corresponding con-
text probabilities:

PI =
∑

context

PI(context) · P (context).

To compare across different levels, we defined a normalized matching PI
measure that quantifies relative participant performance above random guess-
ing. We computed a random guess baseline; i.e. matching performance in-
dex PIrand that reflects participant responses to targets with equal probabil-
ity for each target for a given context for level-1 (matching PIrand = 0.45).
To correct for differences in random-guess baselines across levels, we sub-
tracted the random guess baseline from the matching performance index,
(matching PInormalized = PI − PIrand).

Performance accuracy: To compare the performance for both structured and
random sequences, we calculated accuracy (percent correct) across trials;
that is, we computed whether the test stimulus was correctly predicted or
not— i.e. the participants response matched the exact outcome based on
the pre-defined sequences. This value, however, was not included in the
figures.

Model description

We developed a computational model that tracks human predictions
as they evolve over time. Using this model, we extract changes in perfor-
mance over time that relate to: (1) learning the memory order that governs
the sequences (i.e., identifying the context length); and (2) learning to gen-
erate a prediction about the next item given the current context. We refer to
these two components as context-length and predictive contingency model,
respectively.

First, we describe the context-length model, which considers partici-
pants’ responses as a weighted combination of multiple Markov processes.
This modelling approach enables us to track participants’ learning in a uni-
fied framework. When participants are first exposed to the sequences, we
reason that their responses will be driven by random guesses, which corre-
sponds to a special setting of the zero-order (memory-less) Markov model.
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We reason that participants’ responses will be later refined after having ob-
served that some symbols are presented more frequently than others in a
given context. At trial t, our model tracks the context-length learning using
two components corresponding to no memory (zero-order Markov model
M0

t using empty context ∅ of zero length) or shallow memory (first-order
Markov modelM1

t using context C1t of length one):

Mt =
∑
k∈{0,1}

wkt ·Mk
t , subject to

∑
k

wkt = 1 with wkt ≥ 0, (1)

where wkt is the mixture coefficient at trial t of the component model Mk
t

and represents the probability of using Mk
t for prediction at trial t. The

mixture coefficients wkt can be thought of as expressing the strength at trial
t of individual componentsMk

t in the overall mixture model. By tracking
the mixture coefficients over trials, we dynamically assess whether partici-
pants’ responses can be accounted for by the different Markov structures.

Given the history of last seen symbols, model (1) gives the following
probability to a target symbol s:

pt(s|{∅, C1t }) = w0
t · p0t (s|∅) + w1

t · p1t (s|C1t ). (2)

The predictive contingency distribution allows us to quantify how the par-
ticipants’ responses compare to the context-conditional probabilities of the
generating Markov model.

To track a participant’s responses over time with model (1), mixture co-
efficients as well as the mixture components themselves are updated after
each response. The model calculates whether the participant’s response is
more likely to be driven by a particular mixture component (e.g. Markov
model of order one), and updates the weight for the components accord-
ingly. The model updating is implemented in Bayesian terms: given the
participant’s response at trial t, each mixture coefficient wkt−1 is updated
proportionally to both the current coefficient value (’strength’ ofMk

t−1) and
the likelihood ofMk

t−1 given the participant’s response. Considering wkt−1
and wkt as the prior and posterior for the model order k, Bayesian update of
wkt reads:

W k
t =

wkt−1 · pkt−1(ŝt|Ckt )∑
kw

k
t−1 · pkt−1(ŝt|Ckt )

. (3)

Similarly, by applying the Bayes rule, the context-conditional predictive
distribution is obtained:

P kt (s|Ckt ) =
δs,ŝt · pkt−1(s|Ckt )∑
sδs,ŝt · pkt−1(s|Ckt )

. (4)
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Here we introduce a noise model δ representing uncertainty in the partici-
pant’s prediction. If we assumed that the participant is certain about their
prediction, δ would be a noise-less model (delta-function),

δs,ŝt =

1 if s = ŝt,

0 if s 6= ŝt.

As the participants learn during the sequence presentation, we assume that
the tracking model (1) of the participant’s responses changes smoothly over
time. This is represented by a partial adaptation of the model parameters
towards the ideal Bayesian updates (3) and (4):

wkt = wkt−1 + ηw · (W k
t − wkt−1) (5)

and
pkt (s|Ckt ) = pkt−1(s|Ckt ) + ηp · wkt ·

(
P kt (s|Ckt )− pkt−1(s|Ckt )

)
, (6)

where 0 < ηp < 1 and 0 < ηw < 1. Here we introduced tuning param-
eters ηp, ηw (i.e. the adaptation rate) to calibrate our tracking model and
ensure smooth learning curves. The case of ηp = ηw = 1 corresponds to
ideal Bayesian updating. From the learning dynamics point of view, for
ηp, ηw < 1, the change ofMt over t is effectively smoothed. In our study,
we assume the adaptation rates attain the same value, ηp = ηw = η, and
set η to 0.04. The qualitative criterion for this calibration is to ensure the
global matching between the performance indices that are directly derived
from the raw data and their model-based counterparts in our model-based
analysis. We tested whether the results of our model-based analysis change
with different adaptation parameters η. The principal results remain un-
changed with a high tolerance to the tuning parameter (η in the range from
0.03 to 0.1), validating the robustness of our model.

Our tracking model hypothesizes two likely sequence structures (i.e.
level-0 and level-1) and tracks whether these structures could account for
the participants’ responses. It should be noted that the model has a special
structure for level-0 data, where participants’ responses are driven by target
probability, rather than context- target contingencies.

In addition, our model needs to be initialized before it can track the par-
ticipant’s responses: i.e., a number of initial updates are needed to ’warm-
up’ the tracking model. We initialized the model by imposing a prior re-
flecting a possible memory structure used by the participants at the start of
training. We initialized the mixture coefficients controlling the degree of a
participant’s initial preference for one mixture component over the other.
Specifically, at level-1 we monitor how the participants switch their predic-
tion strategy from using a level-0 model to using a level-1 model. To reflect
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the participants’ initial preference for a simpler model, we set the initial co-
efficient of level-0 and level-1 model tow = 0.8 and 1−w = 0.2, respectively.

Model-based analysis: context-length model

When fitting the dynamic mixture model (1)–(6) to the response data from
a single subject, we obtain time series of mixture coefficients {wkt } and the
context-target contingencies {pkt }, k = 0, 1, indexed by the trial index t. The
initial settings described above may produce a small systematic variation
on the mixture coefficients wkt . Therefore, to deal with uncertainty about
the participants’ initial preferences, we vary the initial mixture coefficients
by setting w to a range of 5 values: 0.7, 0.75, 0.8, 0.85, 0.9. For every data
level, participant and mixture component k, we then average the resulting 5
trajectories ofwkt into a single mixture coefficient curvewkt . We followed the
same method to produce the averaged context-target contingency curves
{pkt }.

We now present the analysis methods that enable us to infer charac-
teristics of participant’s learning behaviour from the tracking model. We
refer to the time series of mixture coefficients, {wkt }, reflecting learning of
the memory structure, as the context-length model. In particular, for each
participant and data level k0, we are interested in the dynamics of {wk0t }
across all training blocks for that level k0 (model order used to generate the
data). We denote the series {wk0t } by {w̃t} . The w̃t curves thus represent the
dynamics of participants’ learning of the correct memory structure when
producing predictions for the target items. As the w̃t curves have a sig-
moid structure in most cases, we represent them through a parameterised
sigmoid function

Wt =W0 +
δW

1 + exp−ξ(t−τ0)
,

whereW0 is the initial mixture coefficient, δW is the difference between the
initial and final mixture coefficients, ξ is the learning rate and τ0 is the tran-
sition point. For further analysis, we characterize the w̃t curves through the
parameter vector Θ = (W0, δW , ξ, τ0).

Model-based analysis: predictive contingency model

In addition to learning the context length, the participants need to learn
the context-target contingencies. To test whether participants learn context-
target contingencies, we used the predictive contingency model (2) from the
response tracking model. For each level, we compared this predictive con-
tingency model to two baseline models: (i) the underlying Markov model
which is used to generate sequences (i.e. level-1) and (ii) an alternative, less
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complex model (i.e. an approximate marginalized level-0 model).
We used the expected Kullback-Leiber (KL) divergence from the base-

line q to the predictive contingency model pt (2) to quantify the difference
between the two models at trial t:

KLt =
∑
C
pC · KL

(
q(s|C)||pt(s|C)

)
.

The overall difference between q and pt is computed as a weighted average
of the context-specific differences (KL-divergences) over all contexts in the
baseline model. Here, q(s|C) is the context-conditional probability for con-
text C in q, pt(s|C) is the participant’s predictive contingency for that context
at trial t, and pC is the theoretical distribution of contexts for q obtained from
the data generating model. The smaller the divergence between the predic-
tive contingency model and a baseline model, the greater their similarity
(in information theoretic terms).

To test which baseline model the participants used, we computed the
difference between the expected KL divergence from the less complex model
to the predictive contingency model and the expected KL divergence from
the underlying Markov model to the predictive contingency model. We re-
fer to this quantity as ∆KL, measuring which of the two baseline models
is closer (in the information theoretic sense) to the participant’s predictive
contingency model. Positive values of ∆KL indicate that participant re-
sponses were more aligned with the Markov model used to generate se-
quences, while negative values indicate responses were based on a less
complex model.

Analysis of strategy choice

To estimate the strategy employed by the participants when learning con-
ditional probabilities, we compared individual participant’s predictive con-
tingency model (2) to two baseline models: (i) probability matching, where
probabilistic distributions are derived from the Markov models that gener-
ated the presented sequences (Model-matching) and (ii) a probability maxi-
mization model, where only the most likely outcomes are allowed for each
context (Model-maximization). We used Kullback-Leiber (KL) divergence to
compare the response distribution to each of these two models. KL is de-
fined as follows:

KL =
∑
c

M(c)log
M(c)

P (c)

where P (c) and M(c) denote the probability distribution derived from the
estimated predictive contingency model and the baseline models (i.e. prob-
ability matching or maximization) respectively, across all the probabilistic
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conditions c (individual targets at level-0 or context-target contingencies at
level-1).

We quantified the difference between the KL divergence from Model-
matching to the human’s predictive contingency model and the KL diver-
gence from Model-maximization to the predictive contingency model. We re-
fer to this quantity as strategy choice indicated by ∆KL(Model-maximization,
Model-matching). Positive strategy choice values indicate a strategy closer to
matching, while negative values indicate a strategy closer to maximization.
We computed strategy choice trial-by-trial, resulting in a strategy curve
across training for each individual participant. For sequences presented
to each participant, we also generated two artificial data sets by simulating
responses based on exact matching or maximization.

We then derived an individual learning strategy index by calculating
the integral of each participant’s strategy curve and subtracting it from the
integral of the exact matching curve, as defined by Model-matching, across
training. We defined the integral curve difference (ICD) between individ-
ual strategy and exact matching as the individual strategy index. ICD end
refers to ICD calculated over only the last 2 blocks of training. Higher strat-
egy index indicates a strategy closer to maximization.
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